MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnrngo Unicode version

Theorem cnrngo 21086
Description: The set of complex numbers is a (unital) ring. (Contributed by Steve Rodriguez, 2-Feb-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
cnrngo  |-  <.  +  ,  x.  >.  e.  RingOps

Proof of Theorem cnrngo
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnaddablo 21033 . . 3  |-  +  e.  AbelOp
2 ax-mulf 8833 . . 3  |-  x.  :
( CC  X.  CC )
--> CC
31, 2pm3.2i 441 . 2  |-  (  +  e.  AbelOp  /\  x.  : ( CC  X.  CC ) --> CC )
4 mulass 8841 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( x  x.  y
)  x.  z )  =  ( x  x.  ( y  x.  z
) ) )
5 adddi 8842 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
x  x.  ( y  +  z ) )  =  ( ( x  x.  y )  +  ( x  x.  z
) ) )
6 adddir 8846 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( x  +  y )  x.  z )  =  ( ( x  x.  z )  +  ( y  x.  z
) ) )
74, 5, 63jca 1132 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( ( x  x.  y )  x.  z
)  =  ( x  x.  ( y  x.  z ) )  /\  ( x  x.  (
y  +  z ) )  =  ( ( x  x.  y )  +  ( x  x.  z ) )  /\  ( ( x  +  y )  x.  z
)  =  ( ( x  x.  z )  +  ( y  x.  z ) ) ) )
87rgen3 2653 . . 3  |-  A. x  e.  CC  A. y  e.  CC  A. z  e.  CC  ( ( ( x  x.  y )  x.  z )  =  ( x  x.  (
y  x.  z ) )  /\  ( x  x.  ( y  +  z ) )  =  ( ( x  x.  y )  +  ( x  x.  z ) )  /\  ( ( x  +  y )  x.  z )  =  ( ( x  x.  z )  +  ( y  x.  z ) ) )
9 ax-1cn 8811 . . . 4  |-  1  e.  CC
10 mulid2 8852 . . . . . 6  |-  ( y  e.  CC  ->  (
1  x.  y )  =  y )
11 mulid1 8851 . . . . . 6  |-  ( y  e.  CC  ->  (
y  x.  1 )  =  y )
1210, 11jca 518 . . . . 5  |-  ( y  e.  CC  ->  (
( 1  x.  y
)  =  y  /\  ( y  x.  1 )  =  y ) )
1312rgen 2621 . . . 4  |-  A. y  e.  CC  ( ( 1  x.  y )  =  y  /\  ( y  x.  1 )  =  y )
14 oveq1 5881 . . . . . . . 8  |-  ( x  =  1  ->  (
x  x.  y )  =  ( 1  x.  y ) )
1514eqeq1d 2304 . . . . . . 7  |-  ( x  =  1  ->  (
( x  x.  y
)  =  y  <->  ( 1  x.  y )  =  y ) )
16 oveq2 5882 . . . . . . . 8  |-  ( x  =  1  ->  (
y  x.  x )  =  ( y  x.  1 ) )
1716eqeq1d 2304 . . . . . . 7  |-  ( x  =  1  ->  (
( y  x.  x
)  =  y  <->  ( y  x.  1 )  =  y ) )
1815, 17anbi12d 691 . . . . . 6  |-  ( x  =  1  ->  (
( ( x  x.  y )  =  y  /\  ( y  x.  x )  =  y )  <->  ( ( 1  x.  y )  =  y  /\  ( y  x.  1 )  =  y ) ) )
1918ralbidv 2576 . . . . 5  |-  ( x  =  1  ->  ( A. y  e.  CC  ( ( x  x.  y )  =  y  /\  ( y  x.  x )  =  y )  <->  A. y  e.  CC  ( ( 1  x.  y )  =  y  /\  ( y  x.  1 )  =  y ) ) )
2019rspcev 2897 . . . 4  |-  ( ( 1  e.  CC  /\  A. y  e.  CC  (
( 1  x.  y
)  =  y  /\  ( y  x.  1 )  =  y ) )  ->  E. x  e.  CC  A. y  e.  CC  ( ( x  x.  y )  =  y  /\  ( y  x.  x )  =  y ) )
219, 13, 20mp2an 653 . . 3  |-  E. x  e.  CC  A. y  e.  CC  ( ( x  x.  y )  =  y  /\  ( y  x.  x )  =  y )
228, 21pm3.2i 441 . 2  |-  ( A. x  e.  CC  A. y  e.  CC  A. z  e.  CC  ( ( ( x  x.  y )  x.  z )  =  ( x  x.  (
y  x.  z ) )  /\  ( x  x.  ( y  +  z ) )  =  ( ( x  x.  y )  +  ( x  x.  z ) )  /\  ( ( x  +  y )  x.  z )  =  ( ( x  x.  z )  +  ( y  x.  z ) ) )  /\  E. x  e.  CC  A. y  e.  CC  ( ( x  x.  y )  =  y  /\  ( y  x.  x )  =  y ) )
23 mulex 10369 . . 3  |-  x.  e.  _V
24 ablogrpo 20967 . . . . . 6  |-  (  +  e.  AbelOp  ->  +  e.  GrpOp )
251, 24ax-mp 8 . . . . 5  |-  +  e.  GrpOp
26 ax-addf 8832 . . . . . 6  |-  +  :
( CC  X.  CC )
--> CC
2726fdmi 5410 . . . . 5  |-  dom  +  =  ( CC  X.  CC )
2825, 27grporn 20895 . . . 4  |-  CC  =  ran  +
2928isrngo 21061 . . 3  |-  (  x.  e.  _V  ->  ( <.  +  ,  x.  >.  e.  RingOps  <->  ( (  +  e.  AbelOp  /\  x.  : ( CC 
X.  CC ) --> CC )  /\  ( A. x  e.  CC  A. y  e.  CC  A. z  e.  CC  ( ( ( x  x.  y )  x.  z )  =  ( x  x.  (
y  x.  z ) )  /\  ( x  x.  ( y  +  z ) )  =  ( ( x  x.  y )  +  ( x  x.  z ) )  /\  ( ( x  +  y )  x.  z )  =  ( ( x  x.  z )  +  ( y  x.  z ) ) )  /\  E. x  e.  CC  A. y  e.  CC  ( ( x  x.  y )  =  y  /\  ( y  x.  x )  =  y ) ) ) ) )
3023, 29ax-mp 8 . 2  |-  ( <.  +  ,  x.  >.  e.  RingOps  <->  ( (  +  e.  AbelOp  /\  x.  : ( CC  X.  CC ) --> CC )  /\  ( A. x  e.  CC  A. y  e.  CC  A. z  e.  CC  (
( ( x  x.  y )  x.  z
)  =  ( x  x.  ( y  x.  z ) )  /\  ( x  x.  (
y  +  z ) )  =  ( ( x  x.  y )  +  ( x  x.  z ) )  /\  ( ( x  +  y )  x.  z
)  =  ( ( x  x.  z )  +  ( y  x.  z ) ) )  /\  E. x  e.  CC  A. y  e.  CC  ( ( x  x.  y )  =  y  /\  ( y  x.  x )  =  y ) ) ) )
313, 22, 30mpbir2an 886 1  |-  <.  +  ,  x.  >.  e.  RingOps
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   _Vcvv 2801   <.cop 3656    X. cxp 4703   -->wf 5267  (class class class)co 5874   CCcc 8751   1c1 8754    + caddc 8756    x. cmul 8758   GrpOpcgr 20869   AbelOpcablo 20964   RingOpscrngo 21058
This theorem is referenced by:  zintdom  25541
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-ltxr 8888  df-sub 9055  df-neg 9056  df-grpo 20874  df-ablo 20965  df-rngo 21059
  Copyright terms: Public domain W3C validator