MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnrngo Unicode version

Theorem cnrngo 21070
Description: The set of complex numbers is a (unital) ring. (Contributed by Steve Rodriguez, 2-Feb-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
cnrngo  |-  <.  +  ,  x.  >.  e.  RingOps

Proof of Theorem cnrngo
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnaddablo 21017 . . 3  |-  +  e.  AbelOp
2 ax-mulf 8817 . . 3  |-  x.  :
( CC  X.  CC )
--> CC
31, 2pm3.2i 441 . 2  |-  (  +  e.  AbelOp  /\  x.  : ( CC  X.  CC ) --> CC )
4 mulass 8825 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( x  x.  y
)  x.  z )  =  ( x  x.  ( y  x.  z
) ) )
5 adddi 8826 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
x  x.  ( y  +  z ) )  =  ( ( x  x.  y )  +  ( x  x.  z
) ) )
6 adddir 8830 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( x  +  y )  x.  z )  =  ( ( x  x.  z )  +  ( y  x.  z
) ) )
74, 5, 63jca 1132 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( ( x  x.  y )  x.  z
)  =  ( x  x.  ( y  x.  z ) )  /\  ( x  x.  (
y  +  z ) )  =  ( ( x  x.  y )  +  ( x  x.  z ) )  /\  ( ( x  +  y )  x.  z
)  =  ( ( x  x.  z )  +  ( y  x.  z ) ) ) )
87rgen3 2640 . . 3  |-  A. x  e.  CC  A. y  e.  CC  A. z  e.  CC  ( ( ( x  x.  y )  x.  z )  =  ( x  x.  (
y  x.  z ) )  /\  ( x  x.  ( y  +  z ) )  =  ( ( x  x.  y )  +  ( x  x.  z ) )  /\  ( ( x  +  y )  x.  z )  =  ( ( x  x.  z )  +  ( y  x.  z ) ) )
9 ax-1cn 8795 . . . 4  |-  1  e.  CC
10 mulid2 8836 . . . . . 6  |-  ( y  e.  CC  ->  (
1  x.  y )  =  y )
11 mulid1 8835 . . . . . 6  |-  ( y  e.  CC  ->  (
y  x.  1 )  =  y )
1210, 11jca 518 . . . . 5  |-  ( y  e.  CC  ->  (
( 1  x.  y
)  =  y  /\  ( y  x.  1 )  =  y ) )
1312rgen 2608 . . . 4  |-  A. y  e.  CC  ( ( 1  x.  y )  =  y  /\  ( y  x.  1 )  =  y )
14 oveq1 5865 . . . . . . . 8  |-  ( x  =  1  ->  (
x  x.  y )  =  ( 1  x.  y ) )
1514eqeq1d 2291 . . . . . . 7  |-  ( x  =  1  ->  (
( x  x.  y
)  =  y  <->  ( 1  x.  y )  =  y ) )
16 oveq2 5866 . . . . . . . 8  |-  ( x  =  1  ->  (
y  x.  x )  =  ( y  x.  1 ) )
1716eqeq1d 2291 . . . . . . 7  |-  ( x  =  1  ->  (
( y  x.  x
)  =  y  <->  ( y  x.  1 )  =  y ) )
1815, 17anbi12d 691 . . . . . 6  |-  ( x  =  1  ->  (
( ( x  x.  y )  =  y  /\  ( y  x.  x )  =  y )  <->  ( ( 1  x.  y )  =  y  /\  ( y  x.  1 )  =  y ) ) )
1918ralbidv 2563 . . . . 5  |-  ( x  =  1  ->  ( A. y  e.  CC  ( ( x  x.  y )  =  y  /\  ( y  x.  x )  =  y )  <->  A. y  e.  CC  ( ( 1  x.  y )  =  y  /\  ( y  x.  1 )  =  y ) ) )
2019rspcev 2884 . . . 4  |-  ( ( 1  e.  CC  /\  A. y  e.  CC  (
( 1  x.  y
)  =  y  /\  ( y  x.  1 )  =  y ) )  ->  E. x  e.  CC  A. y  e.  CC  ( ( x  x.  y )  =  y  /\  ( y  x.  x )  =  y ) )
219, 13, 20mp2an 653 . . 3  |-  E. x  e.  CC  A. y  e.  CC  ( ( x  x.  y )  =  y  /\  ( y  x.  x )  =  y )
228, 21pm3.2i 441 . 2  |-  ( A. x  e.  CC  A. y  e.  CC  A. z  e.  CC  ( ( ( x  x.  y )  x.  z )  =  ( x  x.  (
y  x.  z ) )  /\  ( x  x.  ( y  +  z ) )  =  ( ( x  x.  y )  +  ( x  x.  z ) )  /\  ( ( x  +  y )  x.  z )  =  ( ( x  x.  z )  +  ( y  x.  z ) ) )  /\  E. x  e.  CC  A. y  e.  CC  ( ( x  x.  y )  =  y  /\  ( y  x.  x )  =  y ) )
23 mulex 10353 . . 3  |-  x.  e.  _V
24 ablogrpo 20951 . . . . . 6  |-  (  +  e.  AbelOp  ->  +  e.  GrpOp )
251, 24ax-mp 8 . . . . 5  |-  +  e.  GrpOp
26 ax-addf 8816 . . . . . 6  |-  +  :
( CC  X.  CC )
--> CC
2726fdmi 5394 . . . . 5  |-  dom  +  =  ( CC  X.  CC )
2825, 27grporn 20879 . . . 4  |-  CC  =  ran  +
2928isrngo 21045 . . 3  |-  (  x.  e.  _V  ->  ( <.  +  ,  x.  >.  e.  RingOps  <->  ( (  +  e.  AbelOp  /\  x.  : ( CC 
X.  CC ) --> CC )  /\  ( A. x  e.  CC  A. y  e.  CC  A. z  e.  CC  ( ( ( x  x.  y )  x.  z )  =  ( x  x.  (
y  x.  z ) )  /\  ( x  x.  ( y  +  z ) )  =  ( ( x  x.  y )  +  ( x  x.  z ) )  /\  ( ( x  +  y )  x.  z )  =  ( ( x  x.  z )  +  ( y  x.  z ) ) )  /\  E. x  e.  CC  A. y  e.  CC  ( ( x  x.  y )  =  y  /\  ( y  x.  x )  =  y ) ) ) ) )
3023, 29ax-mp 8 . 2  |-  ( <.  +  ,  x.  >.  e.  RingOps  <->  ( (  +  e.  AbelOp  /\  x.  : ( CC  X.  CC ) --> CC )  /\  ( A. x  e.  CC  A. y  e.  CC  A. z  e.  CC  (
( ( x  x.  y )  x.  z
)  =  ( x  x.  ( y  x.  z ) )  /\  ( x  x.  (
y  +  z ) )  =  ( ( x  x.  y )  +  ( x  x.  z ) )  /\  ( ( x  +  y )  x.  z
)  =  ( ( x  x.  z )  +  ( y  x.  z ) ) )  /\  E. x  e.  CC  A. y  e.  CC  ( ( x  x.  y )  =  y  /\  ( y  x.  x )  =  y ) ) ) )
313, 22, 30mpbir2an 886 1  |-  <.  +  ,  x.  >.  e.  RingOps
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   _Vcvv 2788   <.cop 3643    X. cxp 4687   -->wf 5251  (class class class)co 5858   CCcc 8735   1c1 8738    + caddc 8740    x. cmul 8742   GrpOpcgr 20853   AbelOpcablo 20948   RingOpscrngo 21042
This theorem is referenced by:  zintdom  25438
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-ltxr 8872  df-sub 9039  df-neg 9040  df-grpo 20858  df-ablo 20949  df-rngo 21043
  Copyright terms: Public domain W3C validator