Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cntzsdrg Unicode version

Theorem cntzsdrg 27613
Description: Centralizers in division rings/fields are subfields. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
cntzsdrg.b  |-  B  =  ( Base `  R
)
cntzsdrg.m  |-  M  =  (mulGrp `  R )
cntzsdrg.z  |-  Z  =  (Cntz `  M )
Assertion
Ref Expression
cntzsdrg  |-  ( ( R  e.  DivRing  /\  S  C_  B )  ->  ( Z `  S )  e.  (SubDRing `  R )
)

Proof of Theorem cntzsdrg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 443 . 2  |-  ( ( R  e.  DivRing  /\  S  C_  B )  ->  R  e.  DivRing )
2 drngrng 15535 . . 3  |-  ( R  e.  DivRing  ->  R  e.  Ring )
3 cntzsdrg.b . . . 4  |-  B  =  ( Base `  R
)
4 cntzsdrg.m . . . 4  |-  M  =  (mulGrp `  R )
5 cntzsdrg.z . . . 4  |-  Z  =  (Cntz `  M )
63, 4, 5cntzsubr 15593 . . 3  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  ( Z `  S )  e.  (SubRing `  R )
)
72, 6sylan 457 . 2  |-  ( ( R  e.  DivRing  /\  S  C_  B )  ->  ( Z `  S )  e.  (SubRing `  R )
)
8 oveq2 5882 . . . . . . 7  |-  ( y  =  ( 0g `  R )  ->  (
( ( invr `  R
) `  x )
( .r `  R
) y )  =  ( ( ( invr `  R ) `  x
) ( .r `  R ) ( 0g
`  R ) ) )
9 oveq1 5881 . . . . . . 7  |-  ( y  =  ( 0g `  R )  ->  (
y ( .r `  R ) ( (
invr `  R ) `  x ) )  =  ( ( 0g `  R ) ( .r
`  R ) ( ( invr `  R
) `  x )
) )
108, 9eqeq12d 2310 . . . . . 6  |-  ( y  =  ( 0g `  R )  ->  (
( ( ( invr `  R ) `  x
) ( .r `  R ) y )  =  ( y ( .r `  R ) ( ( invr `  R
) `  x )
)  <->  ( ( (
invr `  R ) `  x ) ( .r
`  R ) ( 0g `  R ) )  =  ( ( 0g `  R ) ( .r `  R
) ( ( invr `  R ) `  x
) ) ) )
11 eldifsn 3762 . . . . . . . 8  |-  ( y  e.  ( S  \  { ( 0g `  R ) } )  <-> 
( y  e.  S  /\  y  =/=  ( 0g `  R ) ) )
12 eqid 2296 . . . . . . . . . . . . . 14  |-  (Unit `  R )  =  (Unit `  R )
134oveq1i 5884 . . . . . . . . . . . . . 14  |-  ( Ms  (Unit `  R ) )  =  ( (mulGrp `  R
)s  (Unit `  R )
)
14 eqid 2296 . . . . . . . . . . . . . 14  |-  ( invr `  R )  =  (
invr `  R )
1512, 13, 14invrfval 15471 . . . . . . . . . . . . 13  |-  ( invr `  R )  =  ( inv g `  ( Ms  (Unit `  R ) ) )
16 eqid 2296 . . . . . . . . . . . . . . . . 17  |-  ( 0g
`  R )  =  ( 0g `  R
)
173, 12, 16isdrng 15532 . . . . . . . . . . . . . . . 16  |-  ( R  e.  DivRing 
<->  ( R  e.  Ring  /\  (Unit `  R )  =  ( B  \  { ( 0g `  R ) } ) ) )
1817simprbi 450 . . . . . . . . . . . . . . 15  |-  ( R  e.  DivRing  ->  (Unit `  R
)  =  ( B 
\  { ( 0g
`  R ) } ) )
1918oveq2d 5890 . . . . . . . . . . . . . 14  |-  ( R  e.  DivRing  ->  ( Ms  (Unit `  R ) )  =  ( Ms  ( B  \  { ( 0g `  R ) } ) ) )
2019fveq2d 5545 . . . . . . . . . . . . 13  |-  ( R  e.  DivRing  ->  ( inv g `  ( Ms  (Unit `  R )
) )  =  ( inv g `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) )
2115, 20syl5eq 2340 . . . . . . . . . . . 12  |-  ( R  e.  DivRing  ->  ( invr `  R
)  =  ( inv g `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) )
2221ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  ( invr `  R )  =  ( inv g `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) )
2322fveq1d 5543 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  ( ( invr `  R ) `  x )  =  ( ( inv g `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) `  x
) )
244oveq1i 5884 . . . . . . . . . . . . . 14  |-  ( Ms  ( B  \  { ( 0g `  R ) } ) )  =  ( (mulGrp `  R
)s  ( B  \  {
( 0g `  R
) } ) )
253, 16, 24drngmgp 15540 . . . . . . . . . . . . 13  |-  ( R  e.  DivRing  ->  ( Ms  ( B 
\  { ( 0g
`  R ) } ) )  e.  Grp )
2625ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  ( Ms  ( B  \  { ( 0g
`  R ) } ) )  e.  Grp )
27 ssdif 3324 . . . . . . . . . . . . 13  |-  ( S 
C_  B  ->  ( S  \  { ( 0g
`  R ) } )  C_  ( B  \  { ( 0g `  R ) } ) )
2827ad2antlr 707 . . . . . . . . . . . 12  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  ( S  \  { ( 0g `  R ) } ) 
C_  ( B  \  { ( 0g `  R ) } ) )
29 difss 3316 . . . . . . . . . . . . . 14  |-  ( B 
\  { ( 0g
`  R ) } )  C_  B
30 eqid 2296 . . . . . . . . . . . . . . 15  |-  ( Ms  ( B  \  { ( 0g `  R ) } ) )  =  ( Ms  ( B  \  { ( 0g `  R ) } ) )
314, 3mgpbas 15347 . . . . . . . . . . . . . . 15  |-  B  =  ( Base `  M
)
3230, 31ressbas2 13215 . . . . . . . . . . . . . 14  |-  ( ( B  \  { ( 0g `  R ) } )  C_  B  ->  ( B  \  {
( 0g `  R
) } )  =  ( Base `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) )
3329, 32ax-mp 8 . . . . . . . . . . . . 13  |-  ( B 
\  { ( 0g
`  R ) } )  =  ( Base `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) )
34 eqid 2296 . . . . . . . . . . . . 13  |-  (Cntz `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) )  =  (Cntz `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) )
3533, 34cntzsubg 14828 . . . . . . . . . . . 12  |-  ( ( ( Ms  ( B  \  { ( 0g `  R ) } ) )  e.  Grp  /\  ( S  \  { ( 0g `  R ) } )  C_  ( B  \  { ( 0g
`  R ) } ) )  ->  (
(Cntz `  ( Ms  ( B  \  { ( 0g
`  R ) } ) ) ) `  ( S  \  { ( 0g `  R ) } ) )  e.  (SubGrp `  ( Ms  ( B  \  { ( 0g
`  R ) } ) ) ) )
3626, 28, 35syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  ( (Cntz `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) `  ( S  \  { ( 0g
`  R ) } ) )  e.  (SubGrp `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) )
37 difss 3316 . . . . . . . . . . . . . . 15  |-  ( ( Z `  S ) 
\  { ( 0g
`  R ) } )  C_  ( Z `  S )
38 simpr 447 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  DivRing  /\  S  C_  B )  ->  S  C_  B )
39 difss 3316 . . . . . . . . . . . . . . . 16  |-  ( S 
\  { ( 0g
`  R ) } )  C_  S
4031, 5cntz2ss 14824 . . . . . . . . . . . . . . . 16  |-  ( ( S  C_  B  /\  ( S  \  { ( 0g `  R ) } )  C_  S
)  ->  ( Z `  S )  C_  ( Z `  ( S  \  { ( 0g `  R ) } ) ) )
4138, 39, 40sylancl 643 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  DivRing  /\  S  C_  B )  ->  ( Z `  S )  C_  ( Z `  ( S  \  { ( 0g
`  R ) } ) ) )
4237, 41syl5ss 3203 . . . . . . . . . . . . . 14  |-  ( ( R  e.  DivRing  /\  S  C_  B )  ->  (
( Z `  S
)  \  { ( 0g `  R ) } )  C_  ( Z `  ( S  \  {
( 0g `  R
) } ) ) )
4342sselda 3193 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  x  e.  ( Z `  ( S 
\  { ( 0g
`  R ) } ) ) )
4431, 5cntzssv 14820 . . . . . . . . . . . . . . 15  |-  ( Z `
 S )  C_  B
45 ssdif 3324 . . . . . . . . . . . . . . 15  |-  ( ( Z `  S ) 
C_  B  ->  (
( Z `  S
)  \  { ( 0g `  R ) } )  C_  ( B  \  { ( 0g `  R ) } ) )
4644, 45mp1i 11 . . . . . . . . . . . . . 14  |-  ( ( R  e.  DivRing  /\  S  C_  B )  ->  (
( Z `  S
)  \  { ( 0g `  R ) } )  C_  ( B  \  { ( 0g `  R ) } ) )
4746sselda 3193 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  x  e.  ( B  \  { ( 0g `  R ) } ) )
48 elin 3371 . . . . . . . . . . . . 13  |-  ( x  e.  ( ( Z `
 ( S  \  { ( 0g `  R ) } ) )  i^i  ( B 
\  { ( 0g
`  R ) } ) )  <->  ( x  e.  ( Z `  ( S  \  { ( 0g
`  R ) } ) )  /\  x  e.  ( B  \  {
( 0g `  R
) } ) ) )
4943, 47, 48sylanbrc 645 . . . . . . . . . . . 12  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  x  e.  ( ( Z `  ( S  \  { ( 0g `  R ) } ) )  i^i  ( B  \  {
( 0g `  R
) } ) ) )
50 fvex 5555 . . . . . . . . . . . . . . 15  |-  ( Base `  R )  e.  _V
513, 50eqeltri 2366 . . . . . . . . . . . . . 14  |-  B  e. 
_V
52 difexg 4178 . . . . . . . . . . . . . 14  |-  ( B  e.  _V  ->  ( B  \  { ( 0g
`  R ) } )  e.  _V )
5351, 52ax-mp 8 . . . . . . . . . . . . 13  |-  ( B 
\  { ( 0g
`  R ) } )  e.  _V
5430, 5, 34resscntz 14823 . . . . . . . . . . . . 13  |-  ( ( ( B  \  {
( 0g `  R
) } )  e. 
_V  /\  ( S  \  { ( 0g `  R ) } ) 
C_  ( B  \  { ( 0g `  R ) } ) )  ->  ( (Cntz `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) `  ( S  \  { ( 0g
`  R ) } ) )  =  ( ( Z `  ( S  \  { ( 0g
`  R ) } ) )  i^i  ( B  \  { ( 0g
`  R ) } ) ) )
5553, 28, 54sylancr 644 . . . . . . . . . . . 12  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  ( (Cntz `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) `  ( S  \  { ( 0g
`  R ) } ) )  =  ( ( Z `  ( S  \  { ( 0g
`  R ) } ) )  i^i  ( B  \  { ( 0g
`  R ) } ) ) )
5649, 55eleqtrrd 2373 . . . . . . . . . . 11  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  x  e.  ( (Cntz `  ( Ms  ( B  \  { ( 0g
`  R ) } ) ) ) `  ( S  \  { ( 0g `  R ) } ) ) )
57 eqid 2296 . . . . . . . . . . . 12  |-  ( inv g `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) )  =  ( inv g `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) )
5857subginvcl 14646 . . . . . . . . . . 11  |-  ( ( ( (Cntz `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) `
 ( S  \  { ( 0g `  R ) } ) )  e.  (SubGrp `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) )  /\  x  e.  ( (Cntz `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) `
 ( S  \  { ( 0g `  R ) } ) ) )  ->  (
( inv g `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) `  x
)  e.  ( (Cntz `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) `  ( S  \  { ( 0g
`  R ) } ) ) )
5936, 56, 58syl2anc 642 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  ( ( inv g `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) `
 x )  e.  ( (Cntz `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) `
 ( S  \  { ( 0g `  R ) } ) ) )
6023, 59eqeltrd 2370 . . . . . . . . 9  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  ( ( invr `  R ) `  x )  e.  ( (Cntz `  ( Ms  ( B  \  { ( 0g
`  R ) } ) ) ) `  ( S  \  { ( 0g `  R ) } ) ) )
61 eqid 2296 . . . . . . . . . . . . 13  |-  ( .r
`  R )  =  ( .r `  R
)
624, 61mgpplusg 15345 . . . . . . . . . . . 12  |-  ( .r
`  R )  =  ( +g  `  M
)
6330, 62ressplusg 13266 . . . . . . . . . . 11  |-  ( ( B  \  { ( 0g `  R ) } )  e.  _V  ->  ( .r `  R
)  =  ( +g  `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) )
6453, 63ax-mp 8 . . . . . . . . . 10  |-  ( .r
`  R )  =  ( +g  `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) )
6564, 34cntzi 14821 . . . . . . . . 9  |-  ( ( ( ( invr `  R
) `  x )  e.  ( (Cntz `  ( Ms  ( B  \  { ( 0g `  R ) } ) ) ) `
 ( S  \  { ( 0g `  R ) } ) )  /\  y  e.  ( S  \  {
( 0g `  R
) } ) )  ->  ( ( (
invr `  R ) `  x ) ( .r
`  R ) y )  =  ( y ( .r `  R
) ( ( invr `  R ) `  x
) ) )
6660, 65sylan 457 . . . . . . . 8  |-  ( ( ( ( R  e.  DivRing 
/\  S  C_  B
)  /\  x  e.  ( ( Z `  S )  \  {
( 0g `  R
) } ) )  /\  y  e.  ( S  \  { ( 0g `  R ) } ) )  -> 
( ( ( invr `  R ) `  x
) ( .r `  R ) y )  =  ( y ( .r `  R ) ( ( invr `  R
) `  x )
) )
6711, 66sylan2br 462 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  S  C_  B
)  /\  x  e.  ( ( Z `  S )  \  {
( 0g `  R
) } ) )  /\  ( y  e.  S  /\  y  =/=  ( 0g `  R
) ) )  -> 
( ( ( invr `  R ) `  x
) ( .r `  R ) y )  =  ( y ( .r `  R ) ( ( invr `  R
) `  x )
) )
6867anassrs 629 . . . . . 6  |-  ( ( ( ( ( R  e.  DivRing  /\  S  C_  B
)  /\  x  e.  ( ( Z `  S )  \  {
( 0g `  R
) } ) )  /\  y  e.  S
)  /\  y  =/=  ( 0g `  R ) )  ->  ( (
( invr `  R ) `  x ) ( .r
`  R ) y )  =  ( y ( .r `  R
) ( ( invr `  R ) `  x
) ) )
692ad3antrrr 710 . . . . . . . 8  |-  ( ( ( ( R  e.  DivRing 
/\  S  C_  B
)  /\  x  e.  ( ( Z `  S )  \  {
( 0g `  R
) } ) )  /\  y  e.  S
)  ->  R  e.  Ring )
701adantr 451 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  R  e.  DivRing )
71 eldifi 3311 . . . . . . . . . . . 12  |-  ( x  e.  ( ( Z `
 S )  \  { ( 0g `  R ) } )  ->  x  e.  ( Z `  S ) )
7271adantl 452 . . . . . . . . . . 11  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  x  e.  ( Z `  S ) )
7344, 72sseldi 3191 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  x  e.  B )
74 eldifsni 3763 . . . . . . . . . . 11  |-  ( x  e.  ( ( Z `
 S )  \  { ( 0g `  R ) } )  ->  x  =/=  ( 0g `  R ) )
7574adantl 452 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  x  =/=  ( 0g `  R ) )
763, 16, 14drnginvrcl 15545 . . . . . . . . . 10  |-  ( ( R  e.  DivRing  /\  x  e.  B  /\  x  =/=  ( 0g `  R
) )  ->  (
( invr `  R ) `  x )  e.  B
)
7770, 73, 75, 76syl3anc 1182 . . . . . . . . 9  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  ( ( invr `  R ) `  x )  e.  B
)
7877adantr 451 . . . . . . . 8  |-  ( ( ( ( R  e.  DivRing 
/\  S  C_  B
)  /\  x  e.  ( ( Z `  S )  \  {
( 0g `  R
) } ) )  /\  y  e.  S
)  ->  ( ( invr `  R ) `  x )  e.  B
)
793, 61, 16rngrz 15394 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
( invr `  R ) `  x )  e.  B
)  ->  ( (
( invr `  R ) `  x ) ( .r
`  R ) ( 0g `  R ) )  =  ( 0g
`  R ) )
8069, 78, 79syl2anc 642 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  S  C_  B
)  /\  x  e.  ( ( Z `  S )  \  {
( 0g `  R
) } ) )  /\  y  e.  S
)  ->  ( (
( invr `  R ) `  x ) ( .r
`  R ) ( 0g `  R ) )  =  ( 0g
`  R ) )
813, 61, 16rnglz 15393 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
( invr `  R ) `  x )  e.  B
)  ->  ( ( 0g `  R ) ( .r `  R ) ( ( invr `  R
) `  x )
)  =  ( 0g
`  R ) )
8269, 78, 81syl2anc 642 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  S  C_  B
)  /\  x  e.  ( ( Z `  S )  \  {
( 0g `  R
) } ) )  /\  y  e.  S
)  ->  ( ( 0g `  R ) ( .r `  R ) ( ( invr `  R
) `  x )
)  =  ( 0g
`  R ) )
8380, 82eqtr4d 2331 . . . . . 6  |-  ( ( ( ( R  e.  DivRing 
/\  S  C_  B
)  /\  x  e.  ( ( Z `  S )  \  {
( 0g `  R
) } ) )  /\  y  e.  S
)  ->  ( (
( invr `  R ) `  x ) ( .r
`  R ) ( 0g `  R ) )  =  ( ( 0g `  R ) ( .r `  R
) ( ( invr `  R ) `  x
) ) )
8410, 68, 83pm2.61ne 2534 . . . . 5  |-  ( ( ( ( R  e.  DivRing 
/\  S  C_  B
)  /\  x  e.  ( ( Z `  S )  \  {
( 0g `  R
) } ) )  /\  y  e.  S
)  ->  ( (
( invr `  R ) `  x ) ( .r
`  R ) y )  =  ( y ( .r `  R
) ( ( invr `  R ) `  x
) ) )
8584ralrimiva 2639 . . . 4  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  A. y  e.  S  ( (
( invr `  R ) `  x ) ( .r
`  R ) y )  =  ( y ( .r `  R
) ( ( invr `  R ) `  x
) ) )
86 simplr 731 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  S  C_  B
)
8731, 62, 5cntzel 14815 . . . . 5  |-  ( ( S  C_  B  /\  ( ( invr `  R
) `  x )  e.  B )  ->  (
( ( invr `  R
) `  x )  e.  ( Z `  S
)  <->  A. y  e.  S  ( ( ( invr `  R ) `  x
) ( .r `  R ) y )  =  ( y ( .r `  R ) ( ( invr `  R
) `  x )
) ) )
8886, 77, 87syl2anc 642 . . . 4  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  ( (
( invr `  R ) `  x )  e.  ( Z `  S )  <->  A. y  e.  S  ( ( ( invr `  R ) `  x
) ( .r `  R ) y )  =  ( y ( .r `  R ) ( ( invr `  R
) `  x )
) ) )
8985, 88mpbird 223 . . 3  |-  ( ( ( R  e.  DivRing  /\  S  C_  B )  /\  x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) )  ->  ( ( invr `  R ) `  x )  e.  ( Z `  S ) )
9089ralrimiva 2639 . 2  |-  ( ( R  e.  DivRing  /\  S  C_  B )  ->  A. x  e.  ( ( Z `  S )  \  {
( 0g `  R
) } ) ( ( invr `  R
) `  x )  e.  ( Z `  S
) )
9114, 16issdrg2 27609 . 2  |-  ( ( Z `  S )  e.  (SubDRing `  R
)  <->  ( R  e.  DivRing 
/\  ( Z `  S )  e.  (SubRing `  R )  /\  A. x  e.  ( ( Z `  S )  \  { ( 0g `  R ) } ) ( ( invr `  R
) `  x )  e.  ( Z `  S
) ) )
921, 7, 90, 91syl3anbrc 1136 1  |-  ( ( R  e.  DivRing  /\  S  C_  B )  ->  ( Z `  S )  e.  (SubDRing `  R )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   _Vcvv 2801    \ cdif 3162    i^i cin 3164    C_ wss 3165   {csn 3653   ` cfv 5271  (class class class)co 5874   Basecbs 13164   ↾s cress 13165   +g cplusg 13224   .rcmulr 13225   0gc0g 13416   Grpcgrp 14378   inv gcminusg 14379  SubGrpcsubg 14631  Cntzccntz 14807  mulGrpcmgp 15341   Ringcrg 15353  Unitcui 15437   invrcinvr 15469   DivRingcdr 15528  SubRingcsubrg 15557  SubDRingcsdrg 27606
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-tpos 6250  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-0g 13420  df-mnd 14383  df-submnd 14432  df-grp 14505  df-minusg 14506  df-subg 14634  df-cntz 14809  df-mgp 15342  df-rng 15356  df-ur 15358  df-oppr 15421  df-dvdsr 15439  df-unit 15440  df-invr 15470  df-dvr 15481  df-drng 15530  df-subrg 15559  df-sdrg 27607
  Copyright terms: Public domain W3C validator