MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzsubr Unicode version

Theorem cntzsubr 15676
Description: Centralizers in a ring are subrings. (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
cntzsubr.b  |-  B  =  ( Base `  R
)
cntzsubr.m  |-  M  =  (mulGrp `  R )
cntzsubr.z  |-  Z  =  (Cntz `  M )
Assertion
Ref Expression
cntzsubr  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  ( Z `  S )  e.  (SubRing `  R )
)

Proof of Theorem cntzsubr
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntzsubr.m . . . . . 6  |-  M  =  (mulGrp `  R )
2 cntzsubr.b . . . . . 6  |-  B  =  ( Base `  R
)
31, 2mgpbas 15430 . . . . 5  |-  B  =  ( Base `  M
)
4 cntzsubr.z . . . . 5  |-  Z  =  (Cntz `  M )
53, 4cntzssv 14903 . . . 4  |-  ( Z `
 S )  C_  B
65a1i 10 . . 3  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  ( Z `  S )  C_  B )
7 simpll 730 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  z  e.  S
)  ->  R  e.  Ring )
8 ssel2 3251 . . . . . . . . 9  |-  ( ( S  C_  B  /\  z  e.  S )  ->  z  e.  B )
98adantll 694 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  z  e.  S
)  ->  z  e.  B )
10 eqid 2358 . . . . . . . . 9  |-  ( .r
`  R )  =  ( .r `  R
)
11 eqid 2358 . . . . . . . . 9  |-  ( 0g
`  R )  =  ( 0g `  R
)
122, 10, 11rnglz 15476 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  z  e.  B )  ->  (
( 0g `  R
) ( .r `  R ) z )  =  ( 0g `  R ) )
137, 9, 12syl2anc 642 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  z  e.  S
)  ->  ( ( 0g `  R ) ( .r `  R ) z )  =  ( 0g `  R ) )
142, 10, 11rngrz 15477 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  z  e.  B )  ->  (
z ( .r `  R ) ( 0g
`  R ) )  =  ( 0g `  R ) )
157, 9, 14syl2anc 642 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  z  e.  S
)  ->  ( z
( .r `  R
) ( 0g `  R ) )  =  ( 0g `  R
) )
1613, 15eqtr4d 2393 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  z  e.  S
)  ->  ( ( 0g `  R ) ( .r `  R ) z )  =  ( z ( .r `  R ) ( 0g
`  R ) ) )
1716ralrimiva 2702 . . . . 5  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  A. z  e.  S  ( ( 0g `  R ) ( .r `  R ) z )  =  ( z ( .r `  R ) ( 0g
`  R ) ) )
18 simpr 447 . . . . . 6  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  S  C_  B )
192, 11rng0cl 15461 . . . . . . 7  |-  ( R  e.  Ring  ->  ( 0g
`  R )  e.  B )
2019adantr 451 . . . . . 6  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  ( 0g `  R )  e.  B )
211, 10mgpplusg 15428 . . . . . . 7  |-  ( .r
`  R )  =  ( +g  `  M
)
223, 21, 4cntzel 14898 . . . . . 6  |-  ( ( S  C_  B  /\  ( 0g `  R )  e.  B )  -> 
( ( 0g `  R )  e.  ( Z `  S )  <->  A. z  e.  S  ( ( 0g `  R ) ( .r
`  R ) z )  =  ( z ( .r `  R
) ( 0g `  R ) ) ) )
2318, 20, 22syl2anc 642 . . . . 5  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  (
( 0g `  R
)  e.  ( Z `
 S )  <->  A. z  e.  S  ( ( 0g `  R ) ( .r `  R ) z )  =  ( z ( .r `  R ) ( 0g
`  R ) ) ) )
2417, 23mpbird 223 . . . 4  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  ( 0g `  R )  e.  ( Z `  S
) )
25 ne0i 3537 . . . 4  |-  ( ( 0g `  R )  e.  ( Z `  S )  ->  ( Z `  S )  =/=  (/) )
2624, 25syl 15 . . 3  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  ( Z `  S )  =/=  (/) )
27 simpl2 959 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  x  e.  ( Z `  S
) )
28 simpr 447 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  z  e.  S )
2921, 4cntzi 14904 . . . . . . . . . . . 12  |-  ( ( x  e.  ( Z `
 S )  /\  z  e.  S )  ->  ( x ( .r
`  R ) z )  =  ( z ( .r `  R
) x ) )
3027, 28, 29syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
x ( .r `  R ) z )  =  ( z ( .r `  R ) x ) )
31 simpl3 960 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  y  e.  ( Z `  S
) )
3221, 4cntzi 14904 . . . . . . . . . . . 12  |-  ( ( y  e.  ( Z `
 S )  /\  z  e.  S )  ->  ( y ( .r
`  R ) z )  =  ( z ( .r `  R
) y ) )
3331, 28, 32syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
y ( .r `  R ) z )  =  ( z ( .r `  R ) y ) )
3430, 33oveq12d 5963 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) )  =  ( ( z ( .r `  R ) x ) ( +g  `  R ) ( z ( .r `  R
) y ) ) )
35 simpl1l 1006 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  R  e.  Ring )
365, 27sseldi 3254 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  x  e.  B )
375, 31sseldi 3254 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  y  e.  B )
38 simp1r 980 . . . . . . . . . . . 12  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S )
)  ->  S  C_  B
)
3938sselda 3256 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  z  e.  B )
40 eqid 2358 . . . . . . . . . . . 12  |-  ( +g  `  R )  =  ( +g  `  R )
412, 40, 10rngdir 15459 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) )
4235, 36, 37, 39, 41syl13anc 1184 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
( x ( +g  `  R ) y ) ( .r `  R
) z )  =  ( ( x ( .r `  R ) z ) ( +g  `  R ) ( y ( .r `  R
) z ) ) )
432, 40, 10rngdi 15458 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  (
z  e.  B  /\  x  e.  B  /\  y  e.  B )
)  ->  ( z
( .r `  R
) ( x ( +g  `  R ) y ) )  =  ( ( z ( .r `  R ) x ) ( +g  `  R ) ( z ( .r `  R
) y ) ) )
4435, 39, 36, 37, 43syl13anc 1184 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
z ( .r `  R ) ( x ( +g  `  R
) y ) )  =  ( ( z ( .r `  R
) x ) ( +g  `  R ) ( z ( .r
`  R ) y ) ) )
4534, 42, 443eqtr4d 2400 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
( x ( +g  `  R ) y ) ( .r `  R
) z )  =  ( z ( .r
`  R ) ( x ( +g  `  R
) y ) ) )
4645ralrimiva 2702 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S )
)  ->  A. z  e.  S  ( (
x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( z ( .r `  R ) ( x ( +g  `  R
) y ) ) )
47 simp1l 979 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S )
)  ->  R  e.  Ring )
48 simp2 956 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S )
)  ->  x  e.  ( Z `  S ) )
495, 48sseldi 3254 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S )
)  ->  x  e.  B )
50 simp3 957 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S )
)  ->  y  e.  ( Z `  S ) )
515, 50sseldi 3254 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S )
)  ->  y  e.  B )
522, 40rngacl 15467 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  x  e.  B  /\  y  e.  B )  ->  (
x ( +g  `  R
) y )  e.  B )
5347, 49, 51, 52syl3anc 1182 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S )
)  ->  ( x
( +g  `  R ) y )  e.  B
)
543, 21, 4cntzel 14898 . . . . . . . . 9  |-  ( ( S  C_  B  /\  ( x ( +g  `  R ) y )  e.  B )  -> 
( ( x ( +g  `  R ) y )  e.  ( Z `  S )  <->  A. z  e.  S  ( ( x ( +g  `  R ) y ) ( .r
`  R ) z )  =  ( z ( .r `  R
) ( x ( +g  `  R ) y ) ) ) )
5538, 53, 54syl2anc 642 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S )
)  ->  ( (
x ( +g  `  R
) y )  e.  ( Z `  S
)  <->  A. z  e.  S  ( ( x ( +g  `  R ) y ) ( .r
`  R ) z )  =  ( z ( .r `  R
) ( x ( +g  `  R ) y ) ) ) )
5646, 55mpbird 223 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S )
)  ->  ( x
( +g  `  R ) y )  e.  ( Z `  S ) )
57563expa 1151 . . . . . 6  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S ) )  /\  y  e.  ( Z `  S
) )  ->  (
x ( +g  `  R
) y )  e.  ( Z `  S
) )
5857ralrimiva 2702 . . . . 5  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )
)  ->  A. y  e.  ( Z `  S
) ( x ( +g  `  R ) y )  e.  ( Z `  S ) )
5929adantll 694 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
x ( .r `  R ) z )  =  ( z ( .r `  R ) x ) )
6059fveq2d 5612 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
( inv g `  R ) `  (
x ( .r `  R ) z ) )  =  ( ( inv g `  R
) `  ( z
( .r `  R
) x ) ) )
61 eqid 2358 . . . . . . . . 9  |-  ( inv g `  R )  =  ( inv g `  R )
62 simplll 734 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S ) )  /\  z  e.  S )  ->  R  e.  Ring )
63 simplr 731 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S ) )  /\  z  e.  S )  ->  x  e.  ( Z `  S
) )
645, 63sseldi 3254 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S ) )  /\  z  e.  S )  ->  x  e.  B )
65 simplr 731 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )
)  ->  S  C_  B
)
6665sselda 3256 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S ) )  /\  z  e.  S )  ->  z  e.  B )
672, 10, 61, 62, 64, 66rngmneg1 15481 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
( ( inv g `  R ) `  x
) ( .r `  R ) z )  =  ( ( inv g `  R ) `
 ( x ( .r `  R ) z ) ) )
682, 10, 61, 62, 66, 64rngmneg2 15482 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
z ( .r `  R ) ( ( inv g `  R
) `  x )
)  =  ( ( inv g `  R
) `  ( z
( .r `  R
) x ) ) )
6960, 67, 683eqtr4d 2400 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
( ( inv g `  R ) `  x
) ( .r `  R ) z )  =  ( z ( .r `  R ) ( ( inv g `  R ) `  x
) ) )
7069ralrimiva 2702 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )
)  ->  A. z  e.  S  ( (
( inv g `  R ) `  x
) ( .r `  R ) z )  =  ( z ( .r `  R ) ( ( inv g `  R ) `  x
) ) )
71 rnggrp 15445 . . . . . . . . 9  |-  ( R  e.  Ring  ->  R  e. 
Grp )
7271ad2antrr 706 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )
)  ->  R  e.  Grp )
73 simpr 447 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )
)  ->  x  e.  ( Z `  S ) )
745, 73sseldi 3254 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )
)  ->  x  e.  B )
752, 61grpinvcl 14626 . . . . . . . 8  |-  ( ( R  e.  Grp  /\  x  e.  B )  ->  ( ( inv g `  R ) `  x
)  e.  B )
7672, 74, 75syl2anc 642 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )
)  ->  ( ( inv g `  R ) `
 x )  e.  B )
773, 21, 4cntzel 14898 . . . . . . 7  |-  ( ( S  C_  B  /\  ( ( inv g `  R ) `  x
)  e.  B )  ->  ( ( ( inv g `  R
) `  x )  e.  ( Z `  S
)  <->  A. z  e.  S  ( ( ( inv g `  R ) `
 x ) ( .r `  R ) z )  =  ( z ( .r `  R ) ( ( inv g `  R
) `  x )
) ) )
7865, 76, 77syl2anc 642 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )
)  ->  ( (
( inv g `  R ) `  x
)  e.  ( Z `
 S )  <->  A. z  e.  S  ( (
( inv g `  R ) `  x
) ( .r `  R ) z )  =  ( z ( .r `  R ) ( ( inv g `  R ) `  x
) ) ) )
7970, 78mpbird 223 . . . . 5  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )
)  ->  ( ( inv g `  R ) `
 x )  e.  ( Z `  S
) )
8058, 79jca 518 . . . 4  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )
)  ->  ( A. y  e.  ( Z `  S ) ( x ( +g  `  R
) y )  e.  ( Z `  S
)  /\  ( ( inv g `  R ) `
 x )  e.  ( Z `  S
) ) )
8180ralrimiva 2702 . . 3  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  A. x  e.  ( Z `  S
) ( A. y  e.  ( Z `  S
) ( x ( +g  `  R ) y )  e.  ( Z `  S )  /\  ( ( inv g `  R ) `
 x )  e.  ( Z `  S
) ) )
8271adantr 451 . . . 4  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  R  e.  Grp )
832, 40, 61issubg2 14735 . . . 4  |-  ( R  e.  Grp  ->  (
( Z `  S
)  e.  (SubGrp `  R )  <->  ( ( Z `  S )  C_  B  /\  ( Z `
 S )  =/=  (/)  /\  A. x  e.  ( Z `  S
) ( A. y  e.  ( Z `  S
) ( x ( +g  `  R ) y )  e.  ( Z `  S )  /\  ( ( inv g `  R ) `
 x )  e.  ( Z `  S
) ) ) ) )
8482, 83syl 15 . . 3  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  (
( Z `  S
)  e.  (SubGrp `  R )  <->  ( ( Z `  S )  C_  B  /\  ( Z `
 S )  =/=  (/)  /\  A. x  e.  ( Z `  S
) ( A. y  e.  ( Z `  S
) ( x ( +g  `  R ) y )  e.  ( Z `  S )  /\  ( ( inv g `  R ) `
 x )  e.  ( Z `  S
) ) ) ) )
856, 26, 81, 84mpbir3and 1135 . 2  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  ( Z `  S )  e.  (SubGrp `  R )
)
861rngmgp 15446 . . 3  |-  ( R  e.  Ring  ->  M  e. 
Mnd )
873, 4cntzsubm 14910 . . 3  |-  ( ( M  e.  Mnd  /\  S  C_  B )  -> 
( Z `  S
)  e.  (SubMnd `  M ) )
8886, 87sylan 457 . 2  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  ( Z `  S )  e.  (SubMnd `  M )
)
891issubrg3 15672 . . 3  |-  ( R  e.  Ring  ->  ( ( Z `  S )  e.  (SubRing `  R
)  <->  ( ( Z `
 S )  e.  (SubGrp `  R )  /\  ( Z `  S
)  e.  (SubMnd `  M ) ) ) )
9089adantr 451 . 2  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  (
( Z `  S
)  e.  (SubRing `  R
)  <->  ( ( Z `
 S )  e.  (SubGrp `  R )  /\  ( Z `  S
)  e.  (SubMnd `  M ) ) ) )
9185, 88, 90mpbir2and 888 1  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  ( Z `  S )  e.  (SubRing `  R )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710    =/= wne 2521   A.wral 2619    C_ wss 3228   (/)c0 3531   ` cfv 5337  (class class class)co 5945   Basecbs 13245   +g cplusg 13305   .rcmulr 13306   0gc0g 13499   Mndcmnd 14460   Grpcgrp 14461   inv gcminusg 14462  SubMndcsubmnd 14513  SubGrpcsubg 14714  Cntzccntz 14890  mulGrpcmgp 15424   Ringcrg 15436  SubRingcsubrg 15640
This theorem is referenced by:  cntzsdrg  26833
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-riota 6391  df-recs 6475  df-rdg 6510  df-er 6747  df-en 6952  df-dom 6953  df-sdom 6954  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-nn 9837  df-2 9894  df-3 9895  df-ndx 13248  df-slot 13249  df-base 13250  df-sets 13251  df-ress 13252  df-plusg 13318  df-mulr 13319  df-0g 13503  df-mnd 14466  df-submnd 14515  df-grp 14588  df-minusg 14589  df-subg 14717  df-cntz 14892  df-mgp 15425  df-rng 15439  df-ur 15441  df-subrg 15642
  Copyright terms: Public domain W3C validator