MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzsubr Unicode version

Theorem cntzsubr 15577
Description: Centralizers in a ring are subrings. (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
cntzsubr.b  |-  B  =  ( Base `  R
)
cntzsubr.m  |-  M  =  (mulGrp `  R )
cntzsubr.z  |-  Z  =  (Cntz `  M )
Assertion
Ref Expression
cntzsubr  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  ( Z `  S )  e.  (SubRing `  R )
)

Proof of Theorem cntzsubr
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntzsubr.m . . . . . 6  |-  M  =  (mulGrp `  R )
2 cntzsubr.b . . . . . 6  |-  B  =  ( Base `  R
)
31, 2mgpbas 15331 . . . . 5  |-  B  =  ( Base `  M
)
4 cntzsubr.z . . . . 5  |-  Z  =  (Cntz `  M )
53, 4cntzssv 14804 . . . 4  |-  ( Z `
 S )  C_  B
65a1i 10 . . 3  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  ( Z `  S )  C_  B )
7 simpll 730 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  z  e.  S
)  ->  R  e.  Ring )
8 ssel2 3175 . . . . . . . . 9  |-  ( ( S  C_  B  /\  z  e.  S )  ->  z  e.  B )
98adantll 694 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  z  e.  S
)  ->  z  e.  B )
10 eqid 2283 . . . . . . . . 9  |-  ( .r
`  R )  =  ( .r `  R
)
11 eqid 2283 . . . . . . . . 9  |-  ( 0g
`  R )  =  ( 0g `  R
)
122, 10, 11rnglz 15377 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  z  e.  B )  ->  (
( 0g `  R
) ( .r `  R ) z )  =  ( 0g `  R ) )
137, 9, 12syl2anc 642 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  z  e.  S
)  ->  ( ( 0g `  R ) ( .r `  R ) z )  =  ( 0g `  R ) )
142, 10, 11rngrz 15378 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  z  e.  B )  ->  (
z ( .r `  R ) ( 0g
`  R ) )  =  ( 0g `  R ) )
157, 9, 14syl2anc 642 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  z  e.  S
)  ->  ( z
( .r `  R
) ( 0g `  R ) )  =  ( 0g `  R
) )
1613, 15eqtr4d 2318 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  z  e.  S
)  ->  ( ( 0g `  R ) ( .r `  R ) z )  =  ( z ( .r `  R ) ( 0g
`  R ) ) )
1716ralrimiva 2626 . . . . 5  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  A. z  e.  S  ( ( 0g `  R ) ( .r `  R ) z )  =  ( z ( .r `  R ) ( 0g
`  R ) ) )
18 simpr 447 . . . . . 6  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  S  C_  B )
192, 11rng0cl 15362 . . . . . . 7  |-  ( R  e.  Ring  ->  ( 0g
`  R )  e.  B )
2019adantr 451 . . . . . 6  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  ( 0g `  R )  e.  B )
211, 10mgpplusg 15329 . . . . . . 7  |-  ( .r
`  R )  =  ( +g  `  M
)
223, 21, 4cntzel 14799 . . . . . 6  |-  ( ( S  C_  B  /\  ( 0g `  R )  e.  B )  -> 
( ( 0g `  R )  e.  ( Z `  S )  <->  A. z  e.  S  ( ( 0g `  R ) ( .r
`  R ) z )  =  ( z ( .r `  R
) ( 0g `  R ) ) ) )
2318, 20, 22syl2anc 642 . . . . 5  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  (
( 0g `  R
)  e.  ( Z `
 S )  <->  A. z  e.  S  ( ( 0g `  R ) ( .r `  R ) z )  =  ( z ( .r `  R ) ( 0g
`  R ) ) ) )
2417, 23mpbird 223 . . . 4  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  ( 0g `  R )  e.  ( Z `  S
) )
25 ne0i 3461 . . . 4  |-  ( ( 0g `  R )  e.  ( Z `  S )  ->  ( Z `  S )  =/=  (/) )
2624, 25syl 15 . . 3  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  ( Z `  S )  =/=  (/) )
27 simpl2 959 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  x  e.  ( Z `  S
) )
28 simpr 447 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  z  e.  S )
2921, 4cntzi 14805 . . . . . . . . . . . 12  |-  ( ( x  e.  ( Z `
 S )  /\  z  e.  S )  ->  ( x ( .r
`  R ) z )  =  ( z ( .r `  R
) x ) )
3027, 28, 29syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
x ( .r `  R ) z )  =  ( z ( .r `  R ) x ) )
31 simpl3 960 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  y  e.  ( Z `  S
) )
3221, 4cntzi 14805 . . . . . . . . . . . 12  |-  ( ( y  e.  ( Z `
 S )  /\  z  e.  S )  ->  ( y ( .r
`  R ) z )  =  ( z ( .r `  R
) y ) )
3331, 28, 32syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
y ( .r `  R ) z )  =  ( z ( .r `  R ) y ) )
3430, 33oveq12d 5876 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) )  =  ( ( z ( .r `  R ) x ) ( +g  `  R ) ( z ( .r `  R
) y ) ) )
35 simpl1l 1006 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  R  e.  Ring )
365, 27sseldi 3178 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  x  e.  B )
375, 31sseldi 3178 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  y  e.  B )
38 simp1r 980 . . . . . . . . . . . 12  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S )
)  ->  S  C_  B
)
3938sselda 3180 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  z  e.  B )
40 eqid 2283 . . . . . . . . . . . 12  |-  ( +g  `  R )  =  ( +g  `  R )
412, 40, 10rngdir 15360 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) )
4235, 36, 37, 39, 41syl13anc 1184 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
( x ( +g  `  R ) y ) ( .r `  R
) z )  =  ( ( x ( .r `  R ) z ) ( +g  `  R ) ( y ( .r `  R
) z ) ) )
432, 40, 10rngdi 15359 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  (
z  e.  B  /\  x  e.  B  /\  y  e.  B )
)  ->  ( z
( .r `  R
) ( x ( +g  `  R ) y ) )  =  ( ( z ( .r `  R ) x ) ( +g  `  R ) ( z ( .r `  R
) y ) ) )
4435, 39, 36, 37, 43syl13anc 1184 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
z ( .r `  R ) ( x ( +g  `  R
) y ) )  =  ( ( z ( .r `  R
) x ) ( +g  `  R ) ( z ( .r
`  R ) y ) ) )
4534, 42, 443eqtr4d 2325 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
( x ( +g  `  R ) y ) ( .r `  R
) z )  =  ( z ( .r
`  R ) ( x ( +g  `  R
) y ) ) )
4645ralrimiva 2626 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S )
)  ->  A. z  e.  S  ( (
x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( z ( .r `  R ) ( x ( +g  `  R
) y ) ) )
47 simp1l 979 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S )
)  ->  R  e.  Ring )
48 simp2 956 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S )
)  ->  x  e.  ( Z `  S ) )
495, 48sseldi 3178 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S )
)  ->  x  e.  B )
50 simp3 957 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S )
)  ->  y  e.  ( Z `  S ) )
515, 50sseldi 3178 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S )
)  ->  y  e.  B )
522, 40rngacl 15368 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  x  e.  B  /\  y  e.  B )  ->  (
x ( +g  `  R
) y )  e.  B )
5347, 49, 51, 52syl3anc 1182 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S )
)  ->  ( x
( +g  `  R ) y )  e.  B
)
543, 21, 4cntzel 14799 . . . . . . . . 9  |-  ( ( S  C_  B  /\  ( x ( +g  `  R ) y )  e.  B )  -> 
( ( x ( +g  `  R ) y )  e.  ( Z `  S )  <->  A. z  e.  S  ( ( x ( +g  `  R ) y ) ( .r
`  R ) z )  =  ( z ( .r `  R
) ( x ( +g  `  R ) y ) ) ) )
5538, 53, 54syl2anc 642 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S )
)  ->  ( (
x ( +g  `  R
) y )  e.  ( Z `  S
)  <->  A. z  e.  S  ( ( x ( +g  `  R ) y ) ( .r
`  R ) z )  =  ( z ( .r `  R
) ( x ( +g  `  R ) y ) ) ) )
5646, 55mpbird 223 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )  /\  y  e.  ( Z `  S )
)  ->  ( x
( +g  `  R ) y )  e.  ( Z `  S ) )
57563expa 1151 . . . . . 6  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S ) )  /\  y  e.  ( Z `  S
) )  ->  (
x ( +g  `  R
) y )  e.  ( Z `  S
) )
5857ralrimiva 2626 . . . . 5  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )
)  ->  A. y  e.  ( Z `  S
) ( x ( +g  `  R ) y )  e.  ( Z `  S ) )
5929adantll 694 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
x ( .r `  R ) z )  =  ( z ( .r `  R ) x ) )
6059fveq2d 5529 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
( inv g `  R ) `  (
x ( .r `  R ) z ) )  =  ( ( inv g `  R
) `  ( z
( .r `  R
) x ) ) )
61 eqid 2283 . . . . . . . . 9  |-  ( inv g `  R )  =  ( inv g `  R )
62 simplll 734 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S ) )  /\  z  e.  S )  ->  R  e.  Ring )
63 simplr 731 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S ) )  /\  z  e.  S )  ->  x  e.  ( Z `  S
) )
645, 63sseldi 3178 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S ) )  /\  z  e.  S )  ->  x  e.  B )
65 simplr 731 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )
)  ->  S  C_  B
)
6665sselda 3180 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S ) )  /\  z  e.  S )  ->  z  e.  B )
672, 10, 61, 62, 64, 66rngmneg1 15382 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
( ( inv g `  R ) `  x
) ( .r `  R ) z )  =  ( ( inv g `  R ) `
 ( x ( .r `  R ) z ) ) )
682, 10, 61, 62, 66, 64rngmneg2 15383 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
z ( .r `  R ) ( ( inv g `  R
) `  x )
)  =  ( ( inv g `  R
) `  ( z
( .r `  R
) x ) ) )
6960, 67, 683eqtr4d 2325 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  S  C_  B
)  /\  x  e.  ( Z `  S ) )  /\  z  e.  S )  ->  (
( ( inv g `  R ) `  x
) ( .r `  R ) z )  =  ( z ( .r `  R ) ( ( inv g `  R ) `  x
) ) )
7069ralrimiva 2626 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )
)  ->  A. z  e.  S  ( (
( inv g `  R ) `  x
) ( .r `  R ) z )  =  ( z ( .r `  R ) ( ( inv g `  R ) `  x
) ) )
71 rnggrp 15346 . . . . . . . . 9  |-  ( R  e.  Ring  ->  R  e. 
Grp )
7271ad2antrr 706 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )
)  ->  R  e.  Grp )
73 simpr 447 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )
)  ->  x  e.  ( Z `  S ) )
745, 73sseldi 3178 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )
)  ->  x  e.  B )
752, 61grpinvcl 14527 . . . . . . . 8  |-  ( ( R  e.  Grp  /\  x  e.  B )  ->  ( ( inv g `  R ) `  x
)  e.  B )
7672, 74, 75syl2anc 642 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )
)  ->  ( ( inv g `  R ) `
 x )  e.  B )
773, 21, 4cntzel 14799 . . . . . . 7  |-  ( ( S  C_  B  /\  ( ( inv g `  R ) `  x
)  e.  B )  ->  ( ( ( inv g `  R
) `  x )  e.  ( Z `  S
)  <->  A. z  e.  S  ( ( ( inv g `  R ) `
 x ) ( .r `  R ) z )  =  ( z ( .r `  R ) ( ( inv g `  R
) `  x )
) ) )
7865, 76, 77syl2anc 642 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )
)  ->  ( (
( inv g `  R ) `  x
)  e.  ( Z `
 S )  <->  A. z  e.  S  ( (
( inv g `  R ) `  x
) ( .r `  R ) z )  =  ( z ( .r `  R ) ( ( inv g `  R ) `  x
) ) ) )
7970, 78mpbird 223 . . . . 5  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )
)  ->  ( ( inv g `  R ) `
 x )  e.  ( Z `  S
) )
8058, 79jca 518 . . . 4  |-  ( ( ( R  e.  Ring  /\  S  C_  B )  /\  x  e.  ( Z `  S )
)  ->  ( A. y  e.  ( Z `  S ) ( x ( +g  `  R
) y )  e.  ( Z `  S
)  /\  ( ( inv g `  R ) `
 x )  e.  ( Z `  S
) ) )
8180ralrimiva 2626 . . 3  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  A. x  e.  ( Z `  S
) ( A. y  e.  ( Z `  S
) ( x ( +g  `  R ) y )  e.  ( Z `  S )  /\  ( ( inv g `  R ) `
 x )  e.  ( Z `  S
) ) )
8271adantr 451 . . . 4  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  R  e.  Grp )
832, 40, 61issubg2 14636 . . . 4  |-  ( R  e.  Grp  ->  (
( Z `  S
)  e.  (SubGrp `  R )  <->  ( ( Z `  S )  C_  B  /\  ( Z `
 S )  =/=  (/)  /\  A. x  e.  ( Z `  S
) ( A. y  e.  ( Z `  S
) ( x ( +g  `  R ) y )  e.  ( Z `  S )  /\  ( ( inv g `  R ) `
 x )  e.  ( Z `  S
) ) ) ) )
8482, 83syl 15 . . 3  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  (
( Z `  S
)  e.  (SubGrp `  R )  <->  ( ( Z `  S )  C_  B  /\  ( Z `
 S )  =/=  (/)  /\  A. x  e.  ( Z `  S
) ( A. y  e.  ( Z `  S
) ( x ( +g  `  R ) y )  e.  ( Z `  S )  /\  ( ( inv g `  R ) `
 x )  e.  ( Z `  S
) ) ) ) )
856, 26, 81, 84mpbir3and 1135 . 2  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  ( Z `  S )  e.  (SubGrp `  R )
)
861rngmgp 15347 . . 3  |-  ( R  e.  Ring  ->  M  e. 
Mnd )
873, 4cntzsubm 14811 . . 3  |-  ( ( M  e.  Mnd  /\  S  C_  B )  -> 
( Z `  S
)  e.  (SubMnd `  M ) )
8886, 87sylan 457 . 2  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  ( Z `  S )  e.  (SubMnd `  M )
)
891issubrg3 15573 . . 3  |-  ( R  e.  Ring  ->  ( ( Z `  S )  e.  (SubRing `  R
)  <->  ( ( Z `
 S )  e.  (SubGrp `  R )  /\  ( Z `  S
)  e.  (SubMnd `  M ) ) ) )
9089adantr 451 . 2  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  (
( Z `  S
)  e.  (SubRing `  R
)  <->  ( ( Z `
 S )  e.  (SubGrp `  R )  /\  ( Z `  S
)  e.  (SubMnd `  M ) ) ) )
9185, 88, 90mpbir2and 888 1  |-  ( ( R  e.  Ring  /\  S  C_  B )  ->  ( Z `  S )  e.  (SubRing `  R )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543    C_ wss 3152   (/)c0 3455   ` cfv 5255  (class class class)co 5858   Basecbs 13148   +g cplusg 13208   .rcmulr 13209   0gc0g 13400   Mndcmnd 14361   Grpcgrp 14362   inv gcminusg 14363  SubMndcsubmnd 14414  SubGrpcsubg 14615  Cntzccntz 14791  mulGrpcmgp 15325   Ringcrg 15337  SubRingcsubrg 15541
This theorem is referenced by:  cntzsdrg  27510
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-0g 13404  df-mnd 14367  df-submnd 14416  df-grp 14489  df-minusg 14490  df-subg 14618  df-cntz 14793  df-mgp 15326  df-rng 15340  df-ur 15342  df-subrg 15543
  Copyright terms: Public domain W3C validator