MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnv Unicode version

Theorem cnvcnv 5142
Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.)
Assertion
Ref Expression
cnvcnv  |-  `' `' A  =  ( A  i^i  ( _V  X.  _V ) )

Proof of Theorem cnvcnv
StepHypRef Expression
1 relcnv 5067 . . . . 5  |-  Rel  `' `' A
2 df-rel 4712 . . . . 5  |-  ( Rel  `' `' A  <->  `' `' A  C_  ( _V 
X.  _V ) )
31, 2mpbi 199 . . . 4  |-  `' `' A  C_  ( _V  X.  _V )
4 relxp 4810 . . . . 5  |-  Rel  ( _V  X.  _V )
5 dfrel2 5140 . . . . 5  |-  ( Rel  ( _V  X.  _V ) 
<->  `' `' ( _V  X.  _V )  =  ( _V  X.  _V ) )
64, 5mpbi 199 . . . 4  |-  `' `' ( _V  X.  _V )  =  ( _V  X.  _V )
73, 6sseqtr4i 3224 . . 3  |-  `' `' A  C_  `' `' ( _V  X.  _V )
8 dfss 3180 . . 3  |-  ( `' `' A  C_  `' `' ( _V  X.  _V )  <->  `' `' A  =  ( `' `' A  i^i  `' `' ( _V  X.  _V )
) )
97, 8mpbi 199 . 2  |-  `' `' A  =  ( `' `' A  i^i  `' `' ( _V  X.  _V )
)
10 cnvin 5104 . 2  |-  `' ( `' A  i^i  `' ( _V  X.  _V )
)  =  ( `' `' A  i^i  `' `' ( _V  X.  _V )
)
11 cnvin 5104 . . . 4  |-  `' ( A  i^i  ( _V 
X.  _V ) )  =  ( `' A  i^i  `' ( _V  X.  _V ) )
1211cnveqi 4872 . . 3  |-  `' `' ( A  i^i  ( _V  X.  _V ) )  =  `' ( `' A  i^i  `' ( _V  X.  _V )
)
13 inss2 3403 . . . . 5  |-  ( A  i^i  ( _V  X.  _V ) )  C_  ( _V  X.  _V )
14 df-rel 4712 . . . . 5  |-  ( Rel  ( A  i^i  ( _V  X.  _V ) )  <-> 
( A  i^i  ( _V  X.  _V ) ) 
C_  ( _V  X.  _V ) )
1513, 14mpbir 200 . . . 4  |-  Rel  ( A  i^i  ( _V  X.  _V ) )
16 dfrel2 5140 . . . 4  |-  ( Rel  ( A  i^i  ( _V  X.  _V ) )  <->  `' `' ( A  i^i  ( _V  X.  _V )
)  =  ( A  i^i  ( _V  X.  _V ) ) )
1715, 16mpbi 199 . . 3  |-  `' `' ( A  i^i  ( _V  X.  _V ) )  =  ( A  i^i  ( _V  X.  _V )
)
1812, 17eqtr3i 2318 . 2  |-  `' ( `' A  i^i  `' ( _V  X.  _V )
)  =  ( A  i^i  ( _V  X.  _V ) )
199, 10, 183eqtr2i 2322 1  |-  `' `' A  =  ( A  i^i  ( _V  X.  _V ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1632   _Vcvv 2801    i^i cin 3164    C_ wss 3165    X. cxp 4703   `'ccnv 4704   Rel wrel 4710
This theorem is referenced by:  cnvcnv2  5143  cnvcnvss  5144  structcnvcnv  13175  strfv2d  13194
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-xp 4711  df-rel 4712  df-cnv 4713
  Copyright terms: Public domain W3C validator