MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnvres Structured version   Unicode version

Theorem cnvcnvres 5325
Description: The double converse of the restriction of a class. (Contributed by NM, 3-Jun-2007.)
Assertion
Ref Expression
cnvcnvres  |-  `' `' ( A  |`  B )  =  ( `' `' A  |`  B )

Proof of Theorem cnvcnvres
StepHypRef Expression
1 relres 5166 . . 3  |-  Rel  ( A  |`  B )
2 dfrel2 5313 . . 3  |-  ( Rel  ( A  |`  B )  <->  `' `' ( A  |`  B )  =  ( A  |`  B )
)
31, 2mpbi 200 . 2  |-  `' `' ( A  |`  B )  =  ( A  |`  B )
4 rescnvcnv 5324 . 2  |-  ( `' `' A  |`  B )  =  ( A  |`  B )
53, 4eqtr4i 2458 1  |-  `' `' ( A  |`  B )  =  ( `' `' A  |`  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1652   `'ccnv 4869    |` cres 4872   Rel wrel 4875
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-xp 4876  df-rel 4877  df-cnv 4878  df-res 4882
  Copyright terms: Public domain W3C validator