Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvco2 Structured version   Unicode version

Theorem cnvco2 25376
Description: Another distributive law of converse over class composition. (Contributed by Scott Fenton, 3-May-2014.)
Assertion
Ref Expression
cnvco2  |-  `' ( A  o.  `' B
)  =  ( B  o.  `' A )

Proof of Theorem cnvco2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5234 . 2  |-  Rel  `' ( A  o.  `' B )
2 relco 5360 . 2  |-  Rel  ( B  o.  `' A
)
3 vex 2951 . . . . . 6  |-  y  e. 
_V
4 vex 2951 . . . . . 6  |-  z  e. 
_V
53, 4brcnv 5047 . . . . 5  |-  ( y `' B z  <->  z B
y )
6 vex 2951 . . . . . . 7  |-  x  e. 
_V
76, 4brcnv 5047 . . . . . 6  |-  ( x `' A z  <->  z A x )
87bicomi 194 . . . . 5  |-  ( z A x  <->  x `' A z )
95, 8anbi12ci 680 . . . 4  |-  ( ( y `' B z  /\  z A x )  <->  ( x `' A z  /\  z B y ) )
109exbii 1592 . . 3  |-  ( E. z ( y `' B z  /\  z A x )  <->  E. z
( x `' A
z  /\  z B
y ) )
116, 3opelcnv 5046 . . . 4  |-  ( <.
x ,  y >.  e.  `' ( A  o.  `' B )  <->  <. y ,  x >.  e.  ( A  o.  `' B
) )
123, 6opelco 5036 . . . 4  |-  ( <.
y ,  x >.  e.  ( A  o.  `' B )  <->  E. z
( y `' B
z  /\  z A x ) )
1311, 12bitri 241 . . 3  |-  ( <.
x ,  y >.  e.  `' ( A  o.  `' B )  <->  E. z
( y `' B
z  /\  z A x ) )
146, 3opelco 5036 . . 3  |-  ( <.
x ,  y >.  e.  ( B  o.  `' A )  <->  E. z
( x `' A
z  /\  z B
y ) )
1510, 13, 143bitr4i 269 . 2  |-  ( <.
x ,  y >.  e.  `' ( A  o.  `' B )  <->  <. x ,  y >.  e.  ( B  o.  `' A
) )
161, 2, 15eqrelriiv 4962 1  |-  `' ( A  o.  `' B
)  =  ( B  o.  `' A )
Colors of variables: wff set class
Syntax hints:    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   <.cop 3809   class class class wbr 4204   `'ccnv 4869    o. ccom 4874
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879
  Copyright terms: Public domain W3C validator