MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnven Unicode version

Theorem cnven 6936
Description: A relational set is equinumerous to its converse. (Contributed by Mario Carneiro, 28-Dec-2014.)
Assertion
Ref Expression
cnven  |-  ( ( Rel  A  /\  A  e.  V )  ->  A  ~~  `' A )

Proof of Theorem cnven
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr 447 . 2  |-  ( ( Rel  A  /\  A  e.  V )  ->  A  e.  V )
2 cnvexg 5208 . . 3  |-  ( A  e.  V  ->  `' A  e.  _V )
32adantl 452 . 2  |-  ( ( Rel  A  /\  A  e.  V )  ->  `' A  e.  _V )
4 cnvf1o 6217 . . 3  |-  ( Rel 
A  ->  ( x  e.  A  |->  U. `' { x } ) : A -1-1-onto-> `' A )
54adantr 451 . 2  |-  ( ( Rel  A  /\  A  e.  V )  ->  (
x  e.  A  |->  U. `' { x } ) : A -1-1-onto-> `' A )
6 f1oen2g 6878 . 2  |-  ( ( A  e.  V  /\  `' A  e.  _V  /\  ( x  e.  A  |-> 
U. `' { x } ) : A -1-1-onto-> `' A )  ->  A  ~~  `' A )
71, 3, 5, 6syl3anc 1182 1  |-  ( ( Rel  A  /\  A  e.  V )  ->  A  ~~  `' A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1684   _Vcvv 2788   {csn 3640   U.cuni 3827   class class class wbr 4023    e. cmpt 4077   `'ccnv 4688   Rel wrel 4694   -1-1-onto->wf1o 5254    ~~ cen 6860
This theorem is referenced by:  cnvfi  7140  lgsquadlem3  20595  cnvct  23343
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1st 6122  df-2nd 6123  df-en 6864
  Copyright terms: Public domain W3C validator