MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnveqb Unicode version

Theorem cnveqb 5145
Description: Equality theorem for converse. (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
cnveqb  |-  ( ( Rel  A  /\  Rel  B )  ->  ( A  =  B  <->  `' A  =  `' B ) )

Proof of Theorem cnveqb
StepHypRef Expression
1 cnveq 4871 . 2  |-  ( A  =  B  ->  `' A  =  `' B
)
2 dfrel2 5140 . . . 4  |-  ( Rel 
A  <->  `' `' A  =  A
)
3 dfrel2 5140 . . . . . . 7  |-  ( Rel 
B  <->  `' `' B  =  B
)
4 cnveq 4871 . . . . . . . . 9  |-  ( `' A  =  `' B  ->  `' `' A  =  `' `' B )
5 eqeq2 2305 . . . . . . . . 9  |-  ( B  =  `' `' B  ->  ( `' `' A  =  B  <->  `' `' A  =  `' `' B ) )
64, 5syl5ibr 212 . . . . . . . 8  |-  ( B  =  `' `' B  ->  ( `' A  =  `' B  ->  `' `' A  =  B )
)
76eqcoms 2299 . . . . . . 7  |-  ( `' `' B  =  B  ->  ( `' A  =  `' B  ->  `' `' A  =  B )
)
83, 7sylbi 187 . . . . . 6  |-  ( Rel 
B  ->  ( `' A  =  `' B  ->  `' `' A  =  B
) )
9 eqeq1 2302 . . . . . . 7  |-  ( A  =  `' `' A  ->  ( A  =  B  <->  `' `' A  =  B
) )
109imbi2d 307 . . . . . 6  |-  ( A  =  `' `' A  ->  ( ( `' A  =  `' B  ->  A  =  B )  <->  ( `' A  =  `' B  ->  `' `' A  =  B
) ) )
118, 10syl5ibr 212 . . . . 5  |-  ( A  =  `' `' A  ->  ( Rel  B  -> 
( `' A  =  `' B  ->  A  =  B ) ) )
1211eqcoms 2299 . . . 4  |-  ( `' `' A  =  A  ->  ( Rel  B  -> 
( `' A  =  `' B  ->  A  =  B ) ) )
132, 12sylbi 187 . . 3  |-  ( Rel 
A  ->  ( Rel  B  ->  ( `' A  =  `' B  ->  A  =  B ) ) )
1413imp 418 . 2  |-  ( ( Rel  A  /\  Rel  B )  ->  ( `' A  =  `' B  ->  A  =  B ) )
151, 14impbid2 195 1  |-  ( ( Rel  A  /\  Rel  B )  ->  ( A  =  B  <->  `' A  =  `' B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632   `'ccnv 4704   Rel wrel 4710
This theorem is referenced by:  cnveq0  5146  weisoeq2  5870
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-xp 4711  df-rel 4712  df-cnv 4713
  Copyright terms: Public domain W3C validator