MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvf1o Unicode version

Theorem cnvf1o 6217
Description: Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
cnvf1o  |-  ( Rel 
A  ->  ( x  e.  A  |->  U. `' { x } ) : A -1-1-onto-> `' A )
Distinct variable group:    x, A

Proof of Theorem cnvf1o
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqid 2283 . 2  |-  ( x  e.  A  |->  U. `' { x } )  =  ( x  e.  A  |->  U. `' { x } )
2 snex 4216 . . . . 5  |-  { x }  e.  _V
32cnvex 5209 . . . 4  |-  `' {
x }  e.  _V
43uniex 4516 . . 3  |-  U. `' { x }  e.  _V
54a1i 10 . 2  |-  ( ( Rel  A  /\  x  e.  A )  ->  U. `' { x }  e.  _V )
6 snex 4216 . . . . 5  |-  { y }  e.  _V
76cnvex 5209 . . . 4  |-  `' {
y }  e.  _V
87uniex 4516 . . 3  |-  U. `' { y }  e.  _V
98a1i 10 . 2  |-  ( ( Rel  A  /\  y  e.  `' A )  ->  U. `' { y }  e.  _V )
10 cnvf1olem 6216 . . 3  |-  ( ( Rel  A  /\  (
x  e.  A  /\  y  =  U. `' {
x } ) )  ->  ( y  e.  `' A  /\  x  =  U. `' { y } ) )
11 relcnv 5051 . . . . 5  |-  Rel  `' A
12 simpr 447 . . . . 5  |-  ( ( Rel  A  /\  (
y  e.  `' A  /\  x  =  U. `' { y } ) )  ->  ( y  e.  `' A  /\  x  =  U. `' { y } ) )
13 cnvf1olem 6216 . . . . 5  |-  ( ( Rel  `' A  /\  ( y  e.  `' A  /\  x  =  U. `' { y } ) )  ->  ( x  e.  `' `' A  /\  y  =  U. `' { x } ) )
1411, 12, 13sylancr 644 . . . 4  |-  ( ( Rel  A  /\  (
y  e.  `' A  /\  x  =  U. `' { y } ) )  ->  ( x  e.  `' `' A  /\  y  =  U. `' { x } ) )
15 dfrel2 5124 . . . . . . 7  |-  ( Rel 
A  <->  `' `' A  =  A
)
16 eleq2 2344 . . . . . . 7  |-  ( `' `' A  =  A  ->  ( x  e.  `' `' A  <->  x  e.  A
) )
1715, 16sylbi 187 . . . . . 6  |-  ( Rel 
A  ->  ( x  e.  `' `' A  <->  x  e.  A
) )
1817anbi1d 685 . . . . 5  |-  ( Rel 
A  ->  ( (
x  e.  `' `' A  /\  y  =  U. `' { x } )  <-> 
( x  e.  A  /\  y  =  U. `' { x } ) ) )
1918adantr 451 . . . 4  |-  ( ( Rel  A  /\  (
y  e.  `' A  /\  x  =  U. `' { y } ) )  ->  ( (
x  e.  `' `' A  /\  y  =  U. `' { x } )  <-> 
( x  e.  A  /\  y  =  U. `' { x } ) ) )
2014, 19mpbid 201 . . 3  |-  ( ( Rel  A  /\  (
y  e.  `' A  /\  x  =  U. `' { y } ) )  ->  ( x  e.  A  /\  y  =  U. `' { x } ) )
2110, 20impbida 805 . 2  |-  ( Rel 
A  ->  ( (
x  e.  A  /\  y  =  U. `' {
x } )  <->  ( y  e.  `' A  /\  x  =  U. `' { y } ) ) )
221, 5, 9, 21f1od 6067 1  |-  ( Rel 
A  ->  ( x  e.  A  |->  U. `' { x } ) : A -1-1-onto-> `' A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788   {csn 3640   U.cuni 3827    e. cmpt 4077   `'ccnv 4688   Rel wrel 4694   -1-1-onto->wf1o 5254
This theorem is referenced by:  tposf12  6259  cnven  6936  xpcomf1o  6951  fsumcnv  12236  gsumcom2  15226
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1st 6122  df-2nd 6123
  Copyright terms: Public domain W3C validator