Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvin Unicode version

Theorem cnvin 5088
 Description: Distributive law for converse over intersection. Theorem 15 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Revised by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
cnvin

Proof of Theorem cnvin
StepHypRef Expression
1 cnvdif 5087 . . 3
2 cnvdif 5087 . . . 4
32difeq2i 3291 . . 3
41, 3eqtri 2303 . 2
5 dfin4 3409 . . 3
65cnveqi 4856 . 2
7 dfin4 3409 . 2
84, 6, 73eqtr4i 2313 1
 Colors of variables: wff set class Syntax hints:   wceq 1623   cdif 3149   cin 3151  ccnv 4688 This theorem is referenced by:  rnin  5090  dminxp  5118  imainrect  5119  cnvcnv  5126  pjdm  16607  ordtrest2  16934  elrn3  24120  pprodcnveq  24423 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-cnv 4697
 Copyright terms: Public domain W3C validator