Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvopab Structured version   Unicode version

Theorem cnvopab 5274
 Description: The converse of a class abstraction of ordered pairs. (Contributed by NM, 11-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvopab
Distinct variable group:   ,
Allowed substitution hints:   (,)

Proof of Theorem cnvopab
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5242 . 2
2 relopab 5001 . 2
3 opelopabsbOLD 4463 . . . 4
4 sbcom2 2190 . . . 4
53, 4bitri 241 . . 3
6 vex 2959 . . . 4
7 vex 2959 . . . 4
86, 7opelcnv 5054 . . 3
9 opelopabsbOLD 4463 . . 3
105, 8, 93bitr4i 269 . 2
111, 2, 10eqrelriiv 4970 1
 Colors of variables: wff set class Syntax hints:   wceq 1652  wsb 1658   wcel 1725  cop 3817  copab 4265  ccnv 4877 This theorem is referenced by:  cnvxp  5290  mptpreima  5363  f1ocnvd  6293  mapsncnv  7060  compsscnv  8251  fsumrev  12562  fsumshft  12563  pt1hmeo  17838  xkocnv  17846  lgsquadlem3  21140  cnvadj  23395  f1o3d  24041  mptcnv  24045  fprodshft  25300  fprodrev  25301  axcontlem2  25904 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-br 4213  df-opab 4267  df-xp 4884  df-rel 4885  df-cnv 4886
 Copyright terms: Public domain W3C validator