MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvps Unicode version

Theorem cnvps 14321
Description: The converse of a poset is a poset. In the general case  ( `' R  e.  PosetRel  ->  R  e.  PosetRel ) is not true. See cnvpsb 14322 for a special case where the property holds. (Contributed by FL, 5-Jan-2009.) (Proof shortened by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
cnvps  |-  ( R  e.  PosetRel  ->  `' R  e.  PosetRel )

Proof of Theorem cnvps
StepHypRef Expression
1 relcnv 5051 . . 3  |-  Rel  `' R
21a1i 10 . 2  |-  ( R  e.  PosetRel  ->  Rel  `' R
)
3 cnvco 4865 . . 3  |-  `' ( R  o.  R )  =  ( `' R  o.  `' R )
4 pstr2 14314 . . . 4  |-  ( R  e.  PosetRel  ->  ( R  o.  R )  C_  R
)
5 cnvss 4854 . . . 4  |-  ( ( R  o.  R ) 
C_  R  ->  `' ( R  o.  R
)  C_  `' R
)
64, 5syl 15 . . 3  |-  ( R  e.  PosetRel  ->  `' ( R  o.  R )  C_  `' R )
73, 6syl5eqssr 3223 . 2  |-  ( R  e.  PosetRel  ->  ( `' R  o.  `' R )  C_  `' R )
8 psrel 14312 . . . . . 6  |-  ( R  e.  PosetRel  ->  Rel  R )
9 dfrel2 5124 . . . . . 6  |-  ( Rel 
R  <->  `' `' R  =  R
)
108, 9sylib 188 . . . . 5  |-  ( R  e.  PosetRel  ->  `' `' R  =  R )
1110ineq2d 3370 . . . 4  |-  ( R  e.  PosetRel  ->  ( `' R  i^i  `' `' R )  =  ( `' R  i^i  R ) )
12 incom 3361 . . . 4  |-  ( `' R  i^i  R )  =  ( R  i^i  `' R )
1311, 12syl6eq 2331 . . 3  |-  ( R  e.  PosetRel  ->  ( `' R  i^i  `' `' R )  =  ( R  i^i  `' R
) )
14 psref2 14313 . . 3  |-  ( R  e.  PosetRel  ->  ( R  i^i  `' R )  =  (  _I  |`  U. U. R
) )
15 relcnvfld 5203 . . . . 5  |-  ( Rel 
R  ->  U. U. R  =  U. U. `' R
)
168, 15syl 15 . . . 4  |-  ( R  e.  PosetRel  ->  U. U. R  = 
U. U. `' R )
1716reseq2d 4955 . . 3  |-  ( R  e.  PosetRel  ->  (  _I  |`  U. U. R )  =  (  _I  |`  U. U. `' R ) )
1813, 14, 173eqtrd 2319 . 2  |-  ( R  e.  PosetRel  ->  ( `' R  i^i  `' `' R )  =  (  _I  |`  U. U. `' R ) )
19 cnvexg 5208 . . 3  |-  ( R  e.  PosetRel  ->  `' R  e. 
_V )
20 isps 14311 . . 3  |-  ( `' R  e.  _V  ->  ( `' R  e.  PosetRel  <->  ( Rel  `' R  /\  ( `' R  o.  `' R
)  C_  `' R  /\  ( `' R  i^i  `' `' R )  =  (  _I  |`  U. U. `' R ) ) ) )
2119, 20syl 15 . 2  |-  ( R  e.  PosetRel  ->  ( `' R  e. 
PosetRel  <-> 
( Rel  `' R  /\  ( `' R  o.  `' R )  C_  `' R  /\  ( `' R  i^i  `' `' R )  =  (  _I  |`  U. U. `' R ) ) ) )
222, 7, 18, 21mpbir3and 1135 1  |-  ( R  e.  PosetRel  ->  `' R  e.  PosetRel )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ w3a 934    = wceq 1623    e. wcel 1684   _Vcvv 2788    i^i cin 3151    C_ wss 3152   U.cuni 3827    _I cid 4304   `'ccnv 4688    |` cres 4691    o. ccom 4693   Rel wrel 4694   PosetRelcps 14301
This theorem is referenced by:  cnvpsb  14322  cnvtsr  14331  ordtcnv  16931  sege  24664  defse3  24684  nfwpr4c  24697  toplat  24702
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ps 14306
  Copyright terms: Public domain W3C validator