MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvps Unicode version

Theorem cnvps 14565
Description: The converse of a poset is a poset. In the general case  ( `' R  e.  PosetRel  ->  R  e.  PosetRel ) is not true. See cnvpsb 14566 for a special case where the property holds. (Contributed by FL, 5-Jan-2009.) (Proof shortened by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
cnvps  |-  ( R  e.  PosetRel  ->  `' R  e.  PosetRel )

Proof of Theorem cnvps
StepHypRef Expression
1 relcnv 5176 . . 3  |-  Rel  `' R
21a1i 11 . 2  |-  ( R  e.  PosetRel  ->  Rel  `' R
)
3 cnvco 4990 . . 3  |-  `' ( R  o.  R )  =  ( `' R  o.  `' R )
4 pstr2 14558 . . . 4  |-  ( R  e.  PosetRel  ->  ( R  o.  R )  C_  R
)
5 cnvss 4979 . . . 4  |-  ( ( R  o.  R ) 
C_  R  ->  `' ( R  o.  R
)  C_  `' R
)
64, 5syl 16 . . 3  |-  ( R  e.  PosetRel  ->  `' ( R  o.  R )  C_  `' R )
73, 6syl5eqssr 3330 . 2  |-  ( R  e.  PosetRel  ->  ( `' R  o.  `' R )  C_  `' R )
8 psrel 14556 . . . . . 6  |-  ( R  e.  PosetRel  ->  Rel  R )
9 dfrel2 5255 . . . . . 6  |-  ( Rel 
R  <->  `' `' R  =  R
)
108, 9sylib 189 . . . . 5  |-  ( R  e.  PosetRel  ->  `' `' R  =  R )
1110ineq2d 3479 . . . 4  |-  ( R  e.  PosetRel  ->  ( `' R  i^i  `' `' R )  =  ( `' R  i^i  R ) )
12 incom 3470 . . . 4  |-  ( `' R  i^i  R )  =  ( R  i^i  `' R )
1311, 12syl6eq 2429 . . 3  |-  ( R  e.  PosetRel  ->  ( `' R  i^i  `' `' R )  =  ( R  i^i  `' R
) )
14 psref2 14557 . . 3  |-  ( R  e.  PosetRel  ->  ( R  i^i  `' R )  =  (  _I  |`  U. U. R
) )
15 relcnvfld 5334 . . . . 5  |-  ( Rel 
R  ->  U. U. R  =  U. U. `' R
)
168, 15syl 16 . . . 4  |-  ( R  e.  PosetRel  ->  U. U. R  = 
U. U. `' R )
1716reseq2d 5080 . . 3  |-  ( R  e.  PosetRel  ->  (  _I  |`  U. U. R )  =  (  _I  |`  U. U. `' R ) )
1813, 14, 173eqtrd 2417 . 2  |-  ( R  e.  PosetRel  ->  ( `' R  i^i  `' `' R )  =  (  _I  |`  U. U. `' R ) )
19 cnvexg 5339 . . 3  |-  ( R  e.  PosetRel  ->  `' R  e. 
_V )
20 isps 14555 . . 3  |-  ( `' R  e.  _V  ->  ( `' R  e.  PosetRel  <->  ( Rel  `' R  /\  ( `' R  o.  `' R
)  C_  `' R  /\  ( `' R  i^i  `' `' R )  =  (  _I  |`  U. U. `' R ) ) ) )
2119, 20syl 16 . 2  |-  ( R  e.  PosetRel  ->  ( `' R  e. 
PosetRel  <-> 
( Rel  `' R  /\  ( `' R  o.  `' R )  C_  `' R  /\  ( `' R  i^i  `' `' R )  =  (  _I  |`  U. U. `' R ) ) ) )
222, 7, 18, 21mpbir3and 1137 1  |-  ( R  e.  PosetRel  ->  `' R  e.  PosetRel )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936    = wceq 1649    e. wcel 1717   _Vcvv 2893    i^i cin 3256    C_ wss 3257   U.cuni 3951    _I cid 4428   `'ccnv 4811    |` cres 4814    o. ccom 4816   Rel wrel 4817   PosetRelcps 14545
This theorem is referenced by:  cnvpsb  14566  cnvtsr  14575  ordtcnv  17181  xrge0iifhmeo  24120
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2362  ax-sep 4265  ax-nul 4273  ax-pow 4312  ax-pr 4338  ax-un 4635
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2236  df-mo 2237  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2506  df-ne 2546  df-ral 2648  df-rex 2649  df-rab 2652  df-v 2895  df-dif 3260  df-un 3262  df-in 3264  df-ss 3271  df-nul 3566  df-if 3677  df-pw 3738  df-sn 3757  df-pr 3758  df-op 3760  df-uni 3952  df-br 4148  df-opab 4202  df-xp 4818  df-rel 4819  df-cnv 4820  df-co 4821  df-dm 4822  df-rn 4823  df-res 4824  df-ps 14550
  Copyright terms: Public domain W3C validator