Mathbox for Frédéric Liné < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvref Unicode version

Theorem cnvref 25168
 Description: The converse of a reflexive class is reflexive. (Contributed by FL, 31-Jul-2009.)
Assertion
Ref Expression
cnvref
Distinct variable group:   ,

Proof of Theorem cnvref
StepHypRef Expression
1 brcnvg 4878 . . . . 5
21bicomd 192 . . . 4
32anidms 626 . . 3
43ralbiia 2588 . 2
5 fldcnv 25159 . . 3
65raleqi 2753 . 2
74, 6bitri 240 1
 Colors of variables: wff set class Syntax hints:   wb 176   wa 358   wcel 1696  wral 2556   cun 3163   class class class wbr 4039  ccnv 4704   cdm 4705   crn 4706 This theorem is referenced by:  cnvref2  25169 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-cnv 4713  df-dm 4715  df-rn 4716
 Copyright terms: Public domain W3C validator