MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvresid Structured version   Unicode version

Theorem cnvresid 5515
Description: Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007.)
Assertion
Ref Expression
cnvresid  |-  `' (  _I  |`  A )  =  (  _I  |`  A )

Proof of Theorem cnvresid
StepHypRef Expression
1 cnvi 5268 . . 3  |-  `'  _I  =  _I
21eqcomi 2439 . 2  |-  _I  =  `'  _I
3 funi 5475 . . 3  |-  Fun  _I
4 funeq 5465 . . 3  |-  (  _I  =  `'  _I  ->  ( Fun  _I  <->  Fun  `'  _I  ) )
53, 4mpbii 203 . 2  |-  (  _I  =  `'  _I  ->  Fun  `'  _I  )
6 funcnvres 5514 . . 3  |-  ( Fun  `'  _I  ->  `' (  _I  |`  A )  =  ( `'  _I  |`  (  _I  " A ) ) )
7 imai 5210 . . . 4  |-  (  _I  " A )  =  A
81, 7reseq12i 5136 . . 3  |-  ( `'  _I  |`  (  _I  " A ) )  =  (  _I  |`  A )
96, 8syl6eq 2483 . 2  |-  ( Fun  `'  _I  ->  `' (  _I  |`  A )  =  (  _I  |`  A ) )
102, 5, 9mp2b 10 1  |-  `' (  _I  |`  A )  =  (  _I  |`  A )
Colors of variables: wff set class
Syntax hints:    = wceq 1652    _I cid 4485   `'ccnv 4869    |` cres 4872   "cima 4873   Fun wfun 5440
This theorem is referenced by:  fcoi1  5609  f1oi  5705  tsrdir  14675  gicref  15050  ssidcn  17311  idqtop  17730  idhmeo  17797  relexpcnv  25125  diophrw  26798  ltrncnvnid  30851  dihmeetlem1N  32015  dihglblem5apreN  32016
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-fun 5448
  Copyright terms: Public domain W3C validator