MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvresima Structured version   Unicode version

Theorem cnvresima 5351
Description: An image under the converse of a restriction. (Contributed by Jeff Hankins, 12-Jul-2009.)
Assertion
Ref Expression
cnvresima  |-  ( `' ( F  |`  A )
" B )  =  ( ( `' F " B )  i^i  A
)

Proof of Theorem cnvresima
Dummy variables  t 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2951 . . . 4  |-  t  e. 
_V
21elima3 5202 . . 3  |-  ( t  e.  ( `' ( F  |`  A ) " B )  <->  E. s
( s  e.  B  /\  <. s ,  t
>.  e.  `' ( F  |`  A ) ) )
31elima3 5202 . . . . 5  |-  ( t  e.  ( `' F " B )  <->  E. s
( s  e.  B  /\  <. s ,  t
>.  e.  `' F ) )
43anbi1i 677 . . . 4  |-  ( ( t  e.  ( `' F " B )  /\  t  e.  A
)  <->  ( E. s
( s  e.  B  /\  <. s ,  t
>.  e.  `' F )  /\  t  e.  A
) )
5 elin 3522 . . . 4  |-  ( t  e.  ( ( `' F " B )  i^i  A )  <->  ( t  e.  ( `' F " B )  /\  t  e.  A ) )
6 vex 2951 . . . . . . . . . 10  |-  s  e. 
_V
76, 1opelcnv 5046 . . . . . . . . 9  |-  ( <.
s ,  t >.  e.  `' ( F  |`  A )  <->  <. t ,  s >.  e.  ( F  |`  A ) )
86opelres 5143 . . . . . . . . . 10  |-  ( <.
t ,  s >.  e.  ( F  |`  A )  <-> 
( <. t ,  s
>.  e.  F  /\  t  e.  A ) )
96, 1opelcnv 5046 . . . . . . . . . . 11  |-  ( <.
s ,  t >.  e.  `' F  <->  <. t ,  s
>.  e.  F )
109anbi1i 677 . . . . . . . . . 10  |-  ( (
<. s ,  t >.  e.  `' F  /\  t  e.  A )  <->  ( <. t ,  s >.  e.  F  /\  t  e.  A
) )
118, 10bitr4i 244 . . . . . . . . 9  |-  ( <.
t ,  s >.  e.  ( F  |`  A )  <-> 
( <. s ,  t
>.  e.  `' F  /\  t  e.  A )
)
127, 11bitri 241 . . . . . . . 8  |-  ( <.
s ,  t >.  e.  `' ( F  |`  A )  <->  ( <. s ,  t >.  e.  `' F  /\  t  e.  A
) )
1312anbi2i 676 . . . . . . 7  |-  ( ( s  e.  B  /\  <.
s ,  t >.  e.  `' ( F  |`  A ) )  <->  ( s  e.  B  /\  ( <. s ,  t >.  e.  `' F  /\  t  e.  A ) ) )
14 anass 631 . . . . . . 7  |-  ( ( ( s  e.  B  /\  <. s ,  t
>.  e.  `' F )  /\  t  e.  A
)  <->  ( s  e.  B  /\  ( <.
s ,  t >.  e.  `' F  /\  t  e.  A ) ) )
1513, 14bitr4i 244 . . . . . 6  |-  ( ( s  e.  B  /\  <.
s ,  t >.  e.  `' ( F  |`  A ) )  <->  ( (
s  e.  B  /\  <.
s ,  t >.  e.  `' F )  /\  t  e.  A ) )
1615exbii 1592 . . . . 5  |-  ( E. s ( s  e.  B  /\  <. s ,  t >.  e.  `' ( F  |`  A ) )  <->  E. s ( ( s  e.  B  /\  <.
s ,  t >.  e.  `' F )  /\  t  e.  A ) )
17 19.41v 1924 . . . . 5  |-  ( E. s ( ( s  e.  B  /\  <. s ,  t >.  e.  `' F )  /\  t  e.  A )  <->  ( E. s ( s  e.  B  /\  <. s ,  t >.  e.  `' F )  /\  t  e.  A ) )
1816, 17bitri 241 . . . 4  |-  ( E. s ( s  e.  B  /\  <. s ,  t >.  e.  `' ( F  |`  A ) )  <->  ( E. s
( s  e.  B  /\  <. s ,  t
>.  e.  `' F )  /\  t  e.  A
) )
194, 5, 183bitr4ri 270 . . 3  |-  ( E. s ( s  e.  B  /\  <. s ,  t >.  e.  `' ( F  |`  A ) )  <->  t  e.  ( ( `' F " B )  i^i  A
) )
202, 19bitri 241 . 2  |-  ( t  e.  ( `' ( F  |`  A ) " B )  <->  t  e.  ( ( `' F " B )  i^i  A
) )
2120eqriv 2432 1  |-  ( `' ( F  |`  A )
" B )  =  ( ( `' F " B )  i^i  A
)
Colors of variables: wff set class
Syntax hints:    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725    i^i cin 3311   <.cop 3809   `'ccnv 4869    |` cres 4872   "cima 4873
This theorem is referenced by:  ramub2  13374  ramub1lem2  13387  cnrest  17341  kgencn  17580  kgencn3  17582  xkoptsub  17678  qtopres  17722  qtoprest  17741  mbfid  19520  mbfres  19528  fimacnvinrn  24039  1stpreima  24087  2ndpreima  24088  cvmsss2  24953  lmhmlnmsplit  27153  frlmsplit2  27211
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-xp 4876  df-cnv 4878  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883
  Copyright terms: Public domain W3C validator