Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvresimaOLD Unicode version

Theorem cnvresimaOLD 25733
Description: An image under the converse of a restriction. (Contributed by Jeff Hankins, 12-Jul-2009.) (Moved to cnvresima 5265 in main set.mm and may be deleted by mathbox owner, JGH. --NM 23-Dec-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
cnvresimaOLD  |-  ( `' ( F  |`  A )
" B )  =  ( ( `' F " B )  i^i  A
)

Proof of Theorem cnvresimaOLD
Dummy variables  t 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2876 . . . 4  |-  t  e. 
_V
21elima3 5122 . . 3  |-  ( t  e.  ( `' ( F  |`  A ) " B )  <->  E. s
( s  e.  B  /\  <. s ,  t
>.  e.  `' ( F  |`  A ) ) )
3 vex 2876 . . . . . . . . 9  |-  s  e. 
_V
43opelres 5063 . . . . . . . 8  |-  ( <.
t ,  s >.  e.  ( F  |`  A )  <-> 
( <. t ,  s
>.  e.  F  /\  t  e.  A ) )
53, 1opelcnv 4966 . . . . . . . 8  |-  ( <.
s ,  t >.  e.  `' ( F  |`  A )  <->  <. t ,  s >.  e.  ( F  |`  A ) )
63, 1opelcnv 4966 . . . . . . . . 9  |-  ( <.
s ,  t >.  e.  `' F  <->  <. t ,  s
>.  e.  F )
76anbi1i 676 . . . . . . . 8  |-  ( (
<. s ,  t >.  e.  `' F  /\  t  e.  A )  <->  ( <. t ,  s >.  e.  F  /\  t  e.  A
) )
84, 5, 73bitr4i 268 . . . . . . 7  |-  ( <.
s ,  t >.  e.  `' ( F  |`  A )  <->  ( <. s ,  t >.  e.  `' F  /\  t  e.  A
) )
98anbi2i 675 . . . . . 6  |-  ( ( s  e.  B  /\  <.
s ,  t >.  e.  `' ( F  |`  A ) )  <->  ( s  e.  B  /\  ( <. s ,  t >.  e.  `' F  /\  t  e.  A ) ) )
10 anass 630 . . . . . 6  |-  ( ( ( s  e.  B  /\  <. s ,  t
>.  e.  `' F )  /\  t  e.  A
)  <->  ( s  e.  B  /\  ( <.
s ,  t >.  e.  `' F  /\  t  e.  A ) ) )
119, 10bitr4i 243 . . . . 5  |-  ( ( s  e.  B  /\  <.
s ,  t >.  e.  `' ( F  |`  A ) )  <->  ( (
s  e.  B  /\  <.
s ,  t >.  e.  `' F )  /\  t  e.  A ) )
1211exbii 1587 . . . 4  |-  ( E. s ( s  e.  B  /\  <. s ,  t >.  e.  `' ( F  |`  A ) )  <->  E. s ( ( s  e.  B  /\  <.
s ,  t >.  e.  `' F )  /\  t  e.  A ) )
13 19.41v 1911 . . . 4  |-  ( E. s ( ( s  e.  B  /\  <. s ,  t >.  e.  `' F )  /\  t  e.  A )  <->  ( E. s ( s  e.  B  /\  <. s ,  t >.  e.  `' F )  /\  t  e.  A ) )
1412, 13bitri 240 . . 3  |-  ( E. s ( s  e.  B  /\  <. s ,  t >.  e.  `' ( F  |`  A ) )  <->  ( E. s
( s  e.  B  /\  <. s ,  t
>.  e.  `' F )  /\  t  e.  A
) )
15 elin 3446 . . . 4  |-  ( t  e.  ( ( `' F " B )  i^i  A )  <->  ( t  e.  ( `' F " B )  /\  t  e.  A ) )
161elima3 5122 . . . . 5  |-  ( t  e.  ( `' F " B )  <->  E. s
( s  e.  B  /\  <. s ,  t
>.  e.  `' F ) )
1716anbi1i 676 . . . 4  |-  ( ( t  e.  ( `' F " B )  /\  t  e.  A
)  <->  ( E. s
( s  e.  B  /\  <. s ,  t
>.  e.  `' F )  /\  t  e.  A
) )
1815, 17bitr2i 241 . . 3  |-  ( ( E. s ( s  e.  B  /\  <. s ,  t >.  e.  `' F )  /\  t  e.  A )  <->  t  e.  ( ( `' F " B )  i^i  A
) )
192, 14, 183bitri 262 . 2  |-  ( t  e.  ( `' ( F  |`  A ) " B )  <->  t  e.  ( ( `' F " B )  i^i  A
) )
2019eqriv 2363 1  |-  ( `' ( F  |`  A )
" B )  =  ( ( `' F " B )  i^i  A
)
Colors of variables: wff set class
Syntax hints:    /\ wa 358   E.wex 1546    = wceq 1647    e. wcel 1715    i^i cin 3237   <.cop 3732   `'ccnv 4791    |` cres 4794   "cima 4795
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pr 4316
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-rab 2637  df-v 2875  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-sn 3735  df-pr 3736  df-op 3738  df-br 4126  df-opab 4180  df-xp 4798  df-cnv 4800  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805
  Copyright terms: Public domain W3C validator