MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvsng Unicode version

Theorem cnvsng 5318
Description: Converse of a singleton of an ordered pair. (Contributed by NM, 23-Jan-2015.)
Assertion
Ref Expression
cnvsng  |-  ( ( A  e.  V  /\  B  e.  W )  ->  `' { <. A ,  B >. }  =  { <. B ,  A >. } )

Proof of Theorem cnvsng
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3948 . . . . 5  |-  ( x  =  A  ->  <. x ,  y >.  =  <. A ,  y >. )
21sneqd 3791 . . . 4  |-  ( x  =  A  ->  { <. x ,  y >. }  =  { <. A ,  y
>. } )
32cnveqd 5011 . . 3  |-  ( x  =  A  ->  `' { <. x ,  y
>. }  =  `' { <. A ,  y >. } )
4 opeq2 3949 . . . 4  |-  ( x  =  A  ->  <. y ,  x >.  =  <. y ,  A >. )
54sneqd 3791 . . 3  |-  ( x  =  A  ->  { <. y ,  x >. }  =  { <. y ,  A >. } )
63, 5eqeq12d 2422 . 2  |-  ( x  =  A  ->  ( `' { <. x ,  y
>. }  =  { <. y ,  x >. }  <->  `' { <. A ,  y >. }  =  { <. y ,  A >. } ) )
7 opeq2 3949 . . . . 5  |-  ( y  =  B  ->  <. A , 
y >.  =  <. A ,  B >. )
87sneqd 3791 . . . 4  |-  ( y  =  B  ->  { <. A ,  y >. }  =  { <. A ,  B >. } )
98cnveqd 5011 . . 3  |-  ( y  =  B  ->  `' { <. A ,  y
>. }  =  `' { <. A ,  B >. } )
10 opeq1 3948 . . . 4  |-  ( y  =  B  ->  <. y ,  A >.  =  <. B ,  A >. )
1110sneqd 3791 . . 3  |-  ( y  =  B  ->  { <. y ,  A >. }  =  { <. B ,  A >. } )
129, 11eqeq12d 2422 . 2  |-  ( y  =  B  ->  ( `' { <. A ,  y
>. }  =  { <. y ,  A >. }  <->  `' { <. A ,  B >. }  =  { <. B ,  A >. } ) )
13 vex 2923 . . 3  |-  x  e. 
_V
14 vex 2923 . . 3  |-  y  e. 
_V
1513, 14cnvsn 5315 . 2  |-  `' { <. x ,  y >. }  =  { <. y ,  x >. }
166, 12, 15vtocl2g 2979 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  `' { <. A ,  B >. }  =  { <. B ,  A >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   {csn 3778   <.cop 3781   `'ccnv 4840
This theorem is referenced by:  opswap  5319  funsng  5460  f1oprswap  5680  constr2spthlem1  21551  constr3pthlem2  21600
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pr 4367
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-rab 2679  df-v 2922  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-sn 3784  df-pr 3785  df-op 3787  df-br 4177  df-opab 4231  df-xp 4847  df-rel 4848  df-cnv 4849
  Copyright terms: Public domain W3C validator