MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvxp Unicode version

Theorem cnvxp 5097
Description: The converse of a cross product. Exercise 11 of [Suppes] p. 67. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvxp  |-  `' ( A  X.  B )  =  ( B  X.  A )

Proof of Theorem cnvxp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvopab 5083 . . 3  |-  `' { <. y ,  x >.  |  ( y  e.  A  /\  x  e.  B
) }  =  { <. x ,  y >.  |  ( y  e.  A  /\  x  e.  B ) }
2 ancom 437 . . . 4  |-  ( ( y  e.  A  /\  x  e.  B )  <->  ( x  e.  B  /\  y  e.  A )
)
32opabbii 4083 . . 3  |-  { <. x ,  y >.  |  ( y  e.  A  /\  x  e.  B ) }  =  { <. x ,  y >.  |  ( x  e.  B  /\  y  e.  A ) }
41, 3eqtri 2303 . 2  |-  `' { <. y ,  x >.  |  ( y  e.  A  /\  x  e.  B
) }  =  { <. x ,  y >.  |  ( x  e.  B  /\  y  e.  A ) }
5 df-xp 4695 . . 3  |-  ( A  X.  B )  =  { <. y ,  x >.  |  ( y  e.  A  /\  x  e.  B ) }
65cnveqi 4856 . 2  |-  `' ( A  X.  B )  =  `' { <. y ,  x >.  |  ( y  e.  A  /\  x  e.  B ) }
7 df-xp 4695 . 2  |-  ( B  X.  A )  =  { <. x ,  y
>.  |  ( x  e.  B  /\  y  e.  A ) }
84, 6, 73eqtr4i 2313 1  |-  `' ( A  X.  B )  =  ( B  X.  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 358    = wceq 1623    e. wcel 1684   {copab 4076    X. cxp 4687   `'ccnv 4688
This theorem is referenced by:  xp0  5098  rnxp  5106  rnxpss  5108  dminxp  5118  imainrect  5119  fparlem3  6220  fparlem4  6221  tposfo  6261  tposf  6262  xpider  6730  xpcomf1o  6951  fpwwe2lem13  8264  xpsc  13459  pjdm  16607  ordtrest2  16934  gtiso  23241  mbfmcst  23564  0rrv  23654  elrn3  24120  sqpsym  25073  dualalg  25782  xpexb  27658
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-cnv 4697
  Copyright terms: Public domain W3C validator