Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  coass Unicode version

Theorem coass 5191
 Description: Associative law for class composition. Theorem 27 of [Suppes] p. 64. Also Exercise 21 of [Enderton] p. 53. Interestingly, this law holds for any classes whatsoever, not just functions or even relations. (Contributed by NM, 27-Jan-1997.)
Assertion
Ref Expression
coass

Proof of Theorem coass
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 5171 . 2
2 relco 5171 . 2
3 excom 1786 . . . 4
4 anass 630 . . . . 5
542exbii 1570 . . . 4
63, 5bitr4i 243 . . 3
7 vex 2791 . . . . . . 7
8 vex 2791 . . . . . . 7
97, 8brco 4852 . . . . . 6
109anbi2i 675 . . . . 5
1110exbii 1569 . . . 4
12 vex 2791 . . . . 5
1312, 8opelco 4853 . . . 4
14 exdistr 1847 . . . 4
1511, 13, 143bitr4i 268 . . 3
16 vex 2791 . . . . . . 7
1712, 16brco 4852 . . . . . 6
1817anbi1i 676 . . . . 5
1918exbii 1569 . . . 4
2012, 8opelco 4853 . . . 4
21 19.41v 1842 . . . . 5
2221exbii 1569 . . . 4
2319, 20, 223bitr4i 268 . . 3
246, 15, 233bitr4i 268 . 2
251, 2, 24eqrelriiv 4781 1
 Colors of variables: wff set class Syntax hints:   wa 358  wex 1528   wceq 1623   wcel 1684  cop 3643   class class class wbr 4023   ccom 4693 This theorem is referenced by:  funcoeqres  5504  fcof1o  5803  tposco  6265  mapen  7025  mapfien  7399  hashfacen  11392  cofuass  13763  setccatid  13916  frmdup3  14488  symggrp  14780  gsumval3  15191  gsumzf1o  15196  gsumzmhm  15210  prds1  15397  psrass1lem  16123  qtophmeo  17508  uniioombllem2  18938  cncombf  19013  pf1mpf  19435  pf1ind  19438  pjsdi2i  22737  pjadj2coi  22784  pj3lem1  22786  pj3i  22788  derangenlem  23702  subfacp1lem5  23715  erdsze2lem2  23735  relexpsucl  24028  relexpadd  24035  pprodcnveq  24423  hmeogrpi  25536  cmpmorass  25966  cocnv  26393  diophrw  26838  eldioph2  26841  f1omvdco2  27391  symggen  27411  psgnunilem1  27416  mendrng  27500  ltrncoidN  30317  trlcoabs2N  30911  trlcoat  30912  trlcone  30917  cdlemg46  30924  cdlemg47  30925  ltrnco4  30928  tgrpgrplem  30938  tendoplass  30972  cdlemi2  31008  cdlemk2  31021  cdlemk4  31023  cdlemk8  31027  cdlemk45  31136  cdlemk54  31147  cdlemk55a  31148  erngdvlem3  31179  erngdvlem3-rN  31187  tendocnv  31211  dvhvaddass  31287  dvhlveclem  31298  cdlemn8  31394  dihopelvalcpre  31438  dih1dimatlem0  31518 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-co 4698
 Copyright terms: Public domain W3C validator