Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cocanfo Structured version   Unicode version

Theorem cocanfo 26457
Description: Cancellation of a surjective function from the right side of a composition. (Contributed by Jeff Madsen, 1-Jun-2011.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
cocanfo  |-  ( ( ( F : A -onto-> B  /\  G  Fn  B  /\  H  Fn  B
)  /\  ( G  o.  F )  =  ( H  o.  F ) )  ->  G  =  H )

Proof of Theorem cocanfo
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 733 . . . . . 6  |-  ( ( ( ( F : A -onto-> B  /\  G  Fn  B  /\  H  Fn  B
)  /\  ( G  o.  F )  =  ( H  o.  F ) )  /\  y  e.  A )  ->  ( G  o.  F )  =  ( H  o.  F ) )
21fveq1d 5759 . . . . 5  |-  ( ( ( ( F : A -onto-> B  /\  G  Fn  B  /\  H  Fn  B
)  /\  ( G  o.  F )  =  ( H  o.  F ) )  /\  y  e.  A )  ->  (
( G  o.  F
) `  y )  =  ( ( H  o.  F ) `  y ) )
3 simpl1 961 . . . . . . 7  |-  ( ( ( F : A -onto-> B  /\  G  Fn  B  /\  H  Fn  B
)  /\  ( G  o.  F )  =  ( H  o.  F ) )  ->  F : A -onto-> B )
4 fof 5682 . . . . . . 7  |-  ( F : A -onto-> B  ->  F : A --> B )
53, 4syl 16 . . . . . 6  |-  ( ( ( F : A -onto-> B  /\  G  Fn  B  /\  H  Fn  B
)  /\  ( G  o.  F )  =  ( H  o.  F ) )  ->  F : A
--> B )
6 fvco3 5829 . . . . . 6  |-  ( ( F : A --> B  /\  y  e.  A )  ->  ( ( G  o.  F ) `  y
)  =  ( G `
 ( F `  y ) ) )
75, 6sylan 459 . . . . 5  |-  ( ( ( ( F : A -onto-> B  /\  G  Fn  B  /\  H  Fn  B
)  /\  ( G  o.  F )  =  ( H  o.  F ) )  /\  y  e.  A )  ->  (
( G  o.  F
) `  y )  =  ( G `  ( F `  y ) ) )
8 fvco3 5829 . . . . . 6  |-  ( ( F : A --> B  /\  y  e.  A )  ->  ( ( H  o.  F ) `  y
)  =  ( H `
 ( F `  y ) ) )
95, 8sylan 459 . . . . 5  |-  ( ( ( ( F : A -onto-> B  /\  G  Fn  B  /\  H  Fn  B
)  /\  ( G  o.  F )  =  ( H  o.  F ) )  /\  y  e.  A )  ->  (
( H  o.  F
) `  y )  =  ( H `  ( F `  y ) ) )
102, 7, 93eqtr3d 2482 . . . 4  |-  ( ( ( ( F : A -onto-> B  /\  G  Fn  B  /\  H  Fn  B
)  /\  ( G  o.  F )  =  ( H  o.  F ) )  /\  y  e.  A )  ->  ( G `  ( F `  y ) )  =  ( H `  ( F `  y )
) )
1110ralrimiva 2795 . . 3  |-  ( ( ( F : A -onto-> B  /\  G  Fn  B  /\  H  Fn  B
)  /\  ( G  o.  F )  =  ( H  o.  F ) )  ->  A. y  e.  A  ( G `  ( F `  y
) )  =  ( H `  ( F `
 y ) ) )
12 fveq2 5757 . . . . . 6  |-  ( ( F `  y )  =  x  ->  ( G `  ( F `  y ) )  =  ( G `  x
) )
13 fveq2 5757 . . . . . 6  |-  ( ( F `  y )  =  x  ->  ( H `  ( F `  y ) )  =  ( H `  x
) )
1412, 13eqeq12d 2456 . . . . 5  |-  ( ( F `  y )  =  x  ->  (
( G `  ( F `  y )
)  =  ( H `
 ( F `  y ) )  <->  ( G `  x )  =  ( H `  x ) ) )
1514cbvfo 6051 . . . 4  |-  ( F : A -onto-> B  -> 
( A. y  e.  A  ( G `  ( F `  y ) )  =  ( H `
 ( F `  y ) )  <->  A. x  e.  B  ( G `  x )  =  ( H `  x ) ) )
163, 15syl 16 . . 3  |-  ( ( ( F : A -onto-> B  /\  G  Fn  B  /\  H  Fn  B
)  /\  ( G  o.  F )  =  ( H  o.  F ) )  ->  ( A. y  e.  A  ( G `  ( F `  y ) )  =  ( H `  ( F `  y )
)  <->  A. x  e.  B  ( G `  x )  =  ( H `  x ) ) )
1711, 16mpbid 203 . 2  |-  ( ( ( F : A -onto-> B  /\  G  Fn  B  /\  H  Fn  B
)  /\  ( G  o.  F )  =  ( H  o.  F ) )  ->  A. x  e.  B  ( G `  x )  =  ( H `  x ) )
18 eqfnfv 5856 . . . 4  |-  ( ( G  Fn  B  /\  H  Fn  B )  ->  ( G  =  H  <->  A. x  e.  B  ( G `  x )  =  ( H `  x ) ) )
19183adant1 976 . . 3  |-  ( ( F : A -onto-> B  /\  G  Fn  B  /\  H  Fn  B
)  ->  ( G  =  H  <->  A. x  e.  B  ( G `  x )  =  ( H `  x ) ) )
2019adantr 453 . 2  |-  ( ( ( F : A -onto-> B  /\  G  Fn  B  /\  H  Fn  B
)  /\  ( G  o.  F )  =  ( H  o.  F ) )  ->  ( G  =  H  <->  A. x  e.  B  ( G `  x )  =  ( H `  x ) ) )
2117, 20mpbird 225 1  |-  ( ( ( F : A -onto-> B  /\  G  Fn  B  /\  H  Fn  B
)  /\  ( G  o.  F )  =  ( H  o.  F ) )  ->  G  =  H )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1727   A.wral 2711    o. ccom 4911    Fn wfn 5478   -->wf 5479   -onto->wfo 5481   ` cfv 5483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-br 4238  df-opab 4292  df-mpt 4293  df-id 4527  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-fo 5489  df-fv 5491
  Copyright terms: Public domain W3C validator