Mathbox for Frédéric Liné < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  codcatval2 Unicode version

Theorem codcatval2 25937
 Description: The codomain of a morphism in the category Set. (Contributed by FL, 6-Nov-2013.)
Hypotheses
Ref Expression
codcatval2.1 .Morphism
codcatval2.2 .cod
Assertion
Ref Expression
codcatval2 .Morphism .cod

Proof of Theorem codcatval2
StepHypRef Expression
1 codcatval2.2 . 2 .cod
2 codcatval2.1 . . . 4 .Morphism
3 eleq2 2344 . . . . . 6 .Morphism .Morphism
43anbi2d 684 . . . . 5 .Morphism .Morphism
5 codcatval 25936 . . . . 5
64, 5syl6bi 219 . . . 4 .Morphism .Morphism
72, 6ax-mp 8 . . 3 .Morphism
8 fveq1 5524 . . . 4 .cod .cod
98eqeq1d 2291 . . 3 .cod .cod
107, 9syl5ibr 212 . 2 .cod .Morphism .cod
111, 10ax-mp 8 1 .Morphism .cod
 Colors of variables: wff set class Syntax hints:   wi 4   wa 358   wceq 1623   wcel 1684   ccom 4693  cfv 5255  c1st 6120  c2nd 6121  cgru 8412  ccmrcase 25910  ccodcase 25932 This theorem is referenced by:  cmp2morpcod  25965  morexcmp  25967 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pr 4214 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-codcatset 25933
 Copyright terms: Public domain W3C validator