Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  codcmpd Unicode version

Theorem codcmpd 25850
Description: When  ( G ( o_ `  T ) F ) is defined, its codomain is the codomain of  G. (Contributed by FL, 29-Oct-2007.)
Hypotheses
Ref Expression
ded.1  |-  M  =  dom  D
ded.2  |-  D  =  ( dom_ `  T
)
ded.3  |-  C  =  ( cod_ `  T
)
ded.4  |-  R  =  ( o_ `  T
)
Assertion
Ref Expression
codcmpd  |-  ( ( T  e.  Ded  /\  F  e.  M  /\  G  e.  M )  ->  ( ( D `  G )  =  ( C `  F )  ->  ( C `  ( G R F ) )  =  ( C `
 G ) ) )

Proof of Theorem codcmpd
Dummy variables  f 
g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ded.2 . . . 4  |-  D  =  ( dom_ `  T
)
2 ded.3 . . . 4  |-  C  =  ( cod_ `  T
)
3 eqid 2296 . . . 4  |-  ( id_ `  T )  =  ( id_ `  T )
4 ded.4 . . . 4  |-  R  =  ( o_ `  T
)
5 ded.1 . . . 4  |-  M  =  dom  D
6 eqid 2296 . . . 4  |-  dom  ( id_ `  T )  =  dom  ( id_ `  T
)
71, 2, 3, 4, 5, 6dedi 25840 . . 3  |-  ( T  e.  Ded  ->  (
( <. <. D ,  C >. ,  <. ( id_ `  T
) ,  R >. >.  e.  Alg  /\  A. x  e.  dom  ( id_ `  T
) ( ( D `
 ( ( id_ `  T ) `  x
) )  =  x  /\  ( C `  ( ( id_ `  T
) `  x )
)  =  x )  /\  A. f  e.  M  A. g  e.  M  ( <. g ,  f >.  e.  dom  R  <-> 
( D `  g
)  =  ( C `
 f ) ) )  /\  ( A. f  e.  M  A. g  e.  M  (
( D `  g
)  =  ( C `
 f )  -> 
( D `  (
g R f ) )  =  ( D `
 f ) )  /\  A. f  e.  M  A. g  e.  M  ( ( D `
 g )  =  ( C `  f
)  ->  ( C `  ( g R f ) )  =  ( C `  g ) ) ) ) )
8 fveq2 5541 . . . . . . . 8  |-  ( f  =  F  ->  ( C `  f )  =  ( C `  F ) )
98eqeq2d 2307 . . . . . . 7  |-  ( f  =  F  ->  (
( D `  g
)  =  ( C `
 f )  <->  ( D `  g )  =  ( C `  F ) ) )
10 oveq2 5882 . . . . . . . . 9  |-  ( f  =  F  ->  (
g R f )  =  ( g R F ) )
1110fveq2d 5545 . . . . . . . 8  |-  ( f  =  F  ->  ( C `  ( g R f ) )  =  ( C `  ( g R F ) ) )
1211eqeq1d 2304 . . . . . . 7  |-  ( f  =  F  ->  (
( C `  (
g R f ) )  =  ( C `
 g )  <->  ( C `  ( g R F ) )  =  ( C `  g ) ) )
139, 12imbi12d 311 . . . . . 6  |-  ( f  =  F  ->  (
( ( D `  g )  =  ( C `  f )  ->  ( C `  ( g R f ) )  =  ( C `  g ) )  <->  ( ( D `
 g )  =  ( C `  F
)  ->  ( C `  ( g R F ) )  =  ( C `  g ) ) ) )
14 fveq2 5541 . . . . . . . 8  |-  ( g  =  G  ->  ( D `  g )  =  ( D `  G ) )
1514eqeq1d 2304 . . . . . . 7  |-  ( g  =  G  ->  (
( D `  g
)  =  ( C `
 F )  <->  ( D `  G )  =  ( C `  F ) ) )
16 oveq1 5881 . . . . . . . . 9  |-  ( g  =  G  ->  (
g R F )  =  ( G R F ) )
1716fveq2d 5545 . . . . . . . 8  |-  ( g  =  G  ->  ( C `  ( g R F ) )  =  ( C `  ( G R F ) ) )
18 fveq2 5541 . . . . . . . 8  |-  ( g  =  G  ->  ( C `  g )  =  ( C `  G ) )
1917, 18eqeq12d 2310 . . . . . . 7  |-  ( g  =  G  ->  (
( C `  (
g R F ) )  =  ( C `
 g )  <->  ( C `  ( G R F ) )  =  ( C `  G ) ) )
2015, 19imbi12d 311 . . . . . 6  |-  ( g  =  G  ->  (
( ( D `  g )  =  ( C `  F )  ->  ( C `  ( g R F ) )  =  ( C `  g ) )  <->  ( ( D `
 G )  =  ( C `  F
)  ->  ( C `  ( G R F ) )  =  ( C `  G ) ) ) )
2113, 20rspc2v 2903 . . . . 5  |-  ( ( F  e.  M  /\  G  e.  M )  ->  ( A. f  e.  M  A. g  e.  M  ( ( D `
 g )  =  ( C `  f
)  ->  ( C `  ( g R f ) )  =  ( C `  g ) )  ->  ( ( D `  G )  =  ( C `  F )  ->  ( C `  ( G R F ) )  =  ( C `  G
) ) ) )
2221com12 27 . . . 4  |-  ( A. f  e.  M  A. g  e.  M  (
( D `  g
)  =  ( C `
 f )  -> 
( C `  (
g R f ) )  =  ( C `
 g ) )  ->  ( ( F  e.  M  /\  G  e.  M )  ->  (
( D `  G
)  =  ( C `
 F )  -> 
( C `  ( G R F ) )  =  ( C `  G ) ) ) )
2322ad2antll 709 . . 3  |-  ( ( ( <. <. D ,  C >. ,  <. ( id_ `  T
) ,  R >. >.  e.  Alg  /\  A. x  e.  dom  ( id_ `  T
) ( ( D `
 ( ( id_ `  T ) `  x
) )  =  x  /\  ( C `  ( ( id_ `  T
) `  x )
)  =  x )  /\  A. f  e.  M  A. g  e.  M  ( <. g ,  f >.  e.  dom  R  <-> 
( D `  g
)  =  ( C `
 f ) ) )  /\  ( A. f  e.  M  A. g  e.  M  (
( D `  g
)  =  ( C `
 f )  -> 
( D `  (
g R f ) )  =  ( D `
 f ) )  /\  A. f  e.  M  A. g  e.  M  ( ( D `
 g )  =  ( C `  f
)  ->  ( C `  ( g R f ) )  =  ( C `  g ) ) ) )  -> 
( ( F  e.  M  /\  G  e.  M )  ->  (
( D `  G
)  =  ( C `
 F )  -> 
( C `  ( G R F ) )  =  ( C `  G ) ) ) )
247, 23syl 15 . 2  |-  ( T  e.  Ded  ->  (
( F  e.  M  /\  G  e.  M
)  ->  ( ( D `  G )  =  ( C `  F )  ->  ( C `  ( G R F ) )  =  ( C `  G
) ) ) )
25243impib 1149 1  |-  ( ( T  e.  Ded  /\  F  e.  M  /\  G  e.  M )  ->  ( ( D `  G )  =  ( C `  F )  ->  ( C `  ( G R F ) )  =  ( C `
 G ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   <.cop 3656   dom cdm 4705   ` cfv 5271  (class class class)co 5874    Alg calg 25814   dom_cdom_ 25815   cod_ccod_ 25816   id_cid_ 25817   o_co_ 25818   Dedcded 25837
This theorem is referenced by:  codcmpc  25875  dualded  25886  homgrf  25905
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fo 5277  df-fv 5279  df-ov 5877  df-1st 6138  df-2nd 6139  df-dom_ 25820  df-cod_ 25821  df-id_ 25822  df-cmpa 25823  df-ded 25838
  Copyright terms: Public domain W3C validator