MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  codir Unicode version

Theorem codir 5221
Description: Two ways of saying a relation is directed. (Contributed by Mario Carneiro, 22-Nov-2013.)
Assertion
Ref Expression
codir  |-  ( ( A  X.  B ) 
C_  ( `' R  o.  R )  <->  A. x  e.  A  A. y  e.  B  E. z
( x R z  /\  y R z ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, R, y, z

Proof of Theorem codir
StepHypRef Expression
1 opelxp 4875 . . . 4  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) )
2 df-br 4181 . . . . 5  |-  ( x ( `' R  o.  R ) y  <->  <. x ,  y >.  e.  ( `' R  o.  R
) )
3 vex 2927 . . . . . 6  |-  x  e. 
_V
4 vex 2927 . . . . . 6  |-  y  e. 
_V
5 brcodir 5220 . . . . . 6  |-  ( ( x  e.  _V  /\  y  e.  _V )  ->  ( x ( `' R  o.  R ) y  <->  E. z ( x R z  /\  y R z ) ) )
63, 4, 5mp2an 654 . . . . 5  |-  ( x ( `' R  o.  R ) y  <->  E. z
( x R z  /\  y R z ) )
72, 6bitr3i 243 . . . 4  |-  ( <.
x ,  y >.  e.  ( `' R  o.  R )  <->  E. z
( x R z  /\  y R z ) )
81, 7imbi12i 317 . . 3  |-  ( (
<. x ,  y >.  e.  ( A  X.  B
)  ->  <. x ,  y >.  e.  ( `' R  o.  R
) )  <->  ( (
x  e.  A  /\  y  e.  B )  ->  E. z ( x R z  /\  y R z ) ) )
982albii 1573 . 2  |-  ( A. x A. y ( <.
x ,  y >.  e.  ( A  X.  B
)  ->  <. x ,  y >.  e.  ( `' R  o.  R
) )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  E. z
( x R z  /\  y R z ) ) )
10 relxp 4950 . . 3  |-  Rel  ( A  X.  B )
11 ssrel 4931 . . 3  |-  ( Rel  ( A  X.  B
)  ->  ( ( A  X.  B )  C_  ( `' R  o.  R
)  <->  A. x A. y
( <. x ,  y
>.  e.  ( A  X.  B )  ->  <. x ,  y >.  e.  ( `' R  o.  R
) ) ) )
1210, 11ax-mp 8 . 2  |-  ( ( A  X.  B ) 
C_  ( `' R  o.  R )  <->  A. x A. y ( <. x ,  y >.  e.  ( A  X.  B )  ->  <. x ,  y
>.  e.  ( `' R  o.  R ) ) )
13 r2al 2711 . 2  |-  ( A. x  e.  A  A. y  e.  B  E. z ( x R z  /\  y R z )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  E. z
( x R z  /\  y R z ) ) )
149, 12, 133bitr4i 269 1  |-  ( ( A  X.  B ) 
C_  ( `' R  o.  R )  <->  A. x  e.  A  A. y  e.  B  E. z
( x R z  /\  y R z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1546   E.wex 1547    e. wcel 1721   A.wral 2674   _Vcvv 2924    C_ wss 3288   <.cop 3785   class class class wbr 4180    X. cxp 4843   `'ccnv 4844    o. ccom 4849   Rel wrel 4850
This theorem is referenced by:  dirge  14645  filnetlem3  26307
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pr 4371
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-sn 3788  df-pr 3789  df-op 3791  df-br 4181  df-opab 4235  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854
  Copyright terms: Public domain W3C validator