MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  codir Unicode version

Theorem codir 5145
Description: Two ways of saying a relation is directed. (Contributed by Mario Carneiro, 22-Nov-2013.)
Assertion
Ref Expression
codir  |-  ( ( A  X.  B ) 
C_  ( `' R  o.  R )  <->  A. x  e.  A  A. y  e.  B  E. z
( x R z  /\  y R z ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, R, y, z

Proof of Theorem codir
StepHypRef Expression
1 opelxp 4801 . . . 4  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) )
2 df-br 4105 . . . . 5  |-  ( x ( `' R  o.  R ) y  <->  <. x ,  y >.  e.  ( `' R  o.  R
) )
3 vex 2867 . . . . . 6  |-  x  e. 
_V
4 vex 2867 . . . . . 6  |-  y  e. 
_V
5 brcodir 5144 . . . . . 6  |-  ( ( x  e.  _V  /\  y  e.  _V )  ->  ( x ( `' R  o.  R ) y  <->  E. z ( x R z  /\  y R z ) ) )
63, 4, 5mp2an 653 . . . . 5  |-  ( x ( `' R  o.  R ) y  <->  E. z
( x R z  /\  y R z ) )
72, 6bitr3i 242 . . . 4  |-  ( <.
x ,  y >.  e.  ( `' R  o.  R )  <->  E. z
( x R z  /\  y R z ) )
81, 7imbi12i 316 . . 3  |-  ( (
<. x ,  y >.  e.  ( A  X.  B
)  ->  <. x ,  y >.  e.  ( `' R  o.  R
) )  <->  ( (
x  e.  A  /\  y  e.  B )  ->  E. z ( x R z  /\  y R z ) ) )
982albii 1567 . 2  |-  ( A. x A. y ( <.
x ,  y >.  e.  ( A  X.  B
)  ->  <. x ,  y >.  e.  ( `' R  o.  R
) )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  E. z
( x R z  /\  y R z ) ) )
10 relxp 4876 . . 3  |-  Rel  ( A  X.  B )
11 ssrel 4858 . . 3  |-  ( Rel  ( A  X.  B
)  ->  ( ( A  X.  B )  C_  ( `' R  o.  R
)  <->  A. x A. y
( <. x ,  y
>.  e.  ( A  X.  B )  ->  <. x ,  y >.  e.  ( `' R  o.  R
) ) ) )
1210, 11ax-mp 8 . 2  |-  ( ( A  X.  B ) 
C_  ( `' R  o.  R )  <->  A. x A. y ( <. x ,  y >.  e.  ( A  X.  B )  ->  <. x ,  y
>.  e.  ( `' R  o.  R ) ) )
13 r2al 2656 . 2  |-  ( A. x  e.  A  A. y  e.  B  E. z ( x R z  /\  y R z )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  E. z
( x R z  /\  y R z ) ) )
149, 12, 133bitr4i 268 1  |-  ( ( A  X.  B ) 
C_  ( `' R  o.  R )  <->  A. x  e.  A  A. y  e.  B  E. z
( x R z  /\  y R z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1540   E.wex 1541    e. wcel 1710   A.wral 2619   _Vcvv 2864    C_ wss 3228   <.cop 3719   class class class wbr 4104    X. cxp 4769   `'ccnv 4770    o. ccom 4775   Rel wrel 4776
This theorem is referenced by:  dirge  14458  filnetlem3  25653
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pr 4295
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-br 4105  df-opab 4159  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780
  Copyright terms: Public domain W3C validator