MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  codir Structured version   Unicode version

Theorem codir 5257
Description: Two ways of saying a relation is directed. (Contributed by Mario Carneiro, 22-Nov-2013.)
Assertion
Ref Expression
codir  |-  ( ( A  X.  B ) 
C_  ( `' R  o.  R )  <->  A. x  e.  A  A. y  e.  B  E. z
( x R z  /\  y R z ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, R, y, z

Proof of Theorem codir
StepHypRef Expression
1 opelxp 4911 . . . 4  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) )
2 df-br 4216 . . . . 5  |-  ( x ( `' R  o.  R ) y  <->  <. x ,  y >.  e.  ( `' R  o.  R
) )
3 vex 2961 . . . . . 6  |-  x  e. 
_V
4 vex 2961 . . . . . 6  |-  y  e. 
_V
5 brcodir 5256 . . . . . 6  |-  ( ( x  e.  _V  /\  y  e.  _V )  ->  ( x ( `' R  o.  R ) y  <->  E. z ( x R z  /\  y R z ) ) )
63, 4, 5mp2an 655 . . . . 5  |-  ( x ( `' R  o.  R ) y  <->  E. z
( x R z  /\  y R z ) )
72, 6bitr3i 244 . . . 4  |-  ( <.
x ,  y >.  e.  ( `' R  o.  R )  <->  E. z
( x R z  /\  y R z ) )
81, 7imbi12i 318 . . 3  |-  ( (
<. x ,  y >.  e.  ( A  X.  B
)  ->  <. x ,  y >.  e.  ( `' R  o.  R
) )  <->  ( (
x  e.  A  /\  y  e.  B )  ->  E. z ( x R z  /\  y R z ) ) )
982albii 1577 . 2  |-  ( A. x A. y ( <.
x ,  y >.  e.  ( A  X.  B
)  ->  <. x ,  y >.  e.  ( `' R  o.  R
) )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  E. z
( x R z  /\  y R z ) ) )
10 relxp 4986 . . 3  |-  Rel  ( A  X.  B )
11 ssrel 4967 . . 3  |-  ( Rel  ( A  X.  B
)  ->  ( ( A  X.  B )  C_  ( `' R  o.  R
)  <->  A. x A. y
( <. x ,  y
>.  e.  ( A  X.  B )  ->  <. x ,  y >.  e.  ( `' R  o.  R
) ) ) )
1210, 11ax-mp 5 . 2  |-  ( ( A  X.  B ) 
C_  ( `' R  o.  R )  <->  A. x A. y ( <. x ,  y >.  e.  ( A  X.  B )  ->  <. x ,  y
>.  e.  ( `' R  o.  R ) ) )
13 r2al 2744 . 2  |-  ( A. x  e.  A  A. y  e.  B  E. z ( x R z  /\  y R z )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  E. z
( x R z  /\  y R z ) ) )
149, 12, 133bitr4i 270 1  |-  ( ( A  X.  B ) 
C_  ( `' R  o.  R )  <->  A. x  e.  A  A. y  e.  B  E. z
( x R z  /\  y R z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360   A.wal 1550   E.wex 1551    e. wcel 1726   A.wral 2707   _Vcvv 2958    C_ wss 3322   <.cop 3819   class class class wbr 4215    X. cxp 4879   `'ccnv 4880    o. ccom 4885   Rel wrel 4886
This theorem is referenced by:  dirge  14687  filnetlem3  26423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-br 4216  df-opab 4270  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890
  Copyright terms: Public domain W3C validator