MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1mul2lem2 Unicode version

Theorem coe1mul2lem2 16345
Description: An equivalence for coe1mul2 16346. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypothesis
Ref Expression
coe1mul2lem2.h  |-  H  =  { d  e.  ( NN0  ^m  1o )  |  d  o R  <_  ( 1o  X.  { k } ) }
Assertion
Ref Expression
coe1mul2lem2  |-  ( k  e.  NN0  ->  ( c  e.  H  |->  ( c `
 (/) ) ) : H -1-1-onto-> ( 0 ... k
) )
Distinct variable groups:    H, c    c, d, k
Allowed substitution hints:    H( k, d)

Proof of Theorem coe1mul2lem2
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 df1o2 6491 . . . . 5  |-  1o  =  { (/) }
2 nn0ex 9971 . . . . 5  |-  NN0  e.  _V
3 0ex 4150 . . . . 5  |-  (/)  e.  _V
4 eqid 2283 . . . . 5  |-  ( c  e.  ( NN0  ^m  1o )  |->  ( c `
 (/) ) )  =  ( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )
51, 2, 3, 4mapsnf1o2 6815 . . . 4  |-  ( c  e.  ( NN0  ^m  1o )  |->  ( c `
 (/) ) ) : ( NN0  ^m  1o )
-1-1-onto-> NN0
6 f1of1 5471 . . . 4  |-  ( ( c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) ) : ( NN0  ^m  1o ) -1-1-onto-> NN0  ->  ( c  e.  ( NN0  ^m  1o )  |->  ( c `  (/) ) ) : ( NN0  ^m  1o )
-1-1-> NN0 )
75, 6ax-mp 8 . . 3  |-  ( c  e.  ( NN0  ^m  1o )  |->  ( c `
 (/) ) ) : ( NN0  ^m  1o ) -1-1-> NN0
8 coe1mul2lem2.h . . . . 5  |-  H  =  { d  e.  ( NN0  ^m  1o )  |  d  o R  <_  ( 1o  X.  { k } ) }
9 ssrab2 3258 . . . . 5  |-  { d  e.  ( NN0  ^m  1o )  |  d  o R  <_  ( 1o 
X.  { k } ) }  C_  ( NN0  ^m  1o )
108, 9eqsstri 3208 . . . 4  |-  H  C_  ( NN0  ^m  1o )
1110a1i 10 . . 3  |-  ( k  e.  NN0  ->  H  C_  ( NN0  ^m  1o ) )
12 f1ores 5487 . . 3  |-  ( ( ( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) ) : ( NN0  ^m  1o ) -1-1-> NN0  /\  H  C_  ( NN0  ^m  1o ) )  ->  ( (
c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )  |`  H ) : H -1-1-onto-> (
( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )
" H ) )
137, 11, 12sylancr 644 . 2  |-  ( k  e.  NN0  ->  ( ( c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )  |`  H ) : H -1-1-onto-> (
( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )
" H ) )
14 coe1mul2lem1 16344 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  d  e.  ( NN0  ^m  1o ) )  -> 
( d  o R  <_  ( 1o  X.  { k } )  <-> 
( d `  (/) )  e.  ( 0 ... k
) ) )
1514rabbidva 2779 . . . . . . . 8  |-  ( k  e.  NN0  ->  { d  e.  ( NN0  ^m  1o )  |  d  o R  <_  ( 1o 
X.  { k } ) }  =  {
d  e.  ( NN0 
^m  1o )  |  ( d `  (/) )  e.  ( 0 ... k
) } )
16 fveq1 5524 . . . . . . . . . 10  |-  ( c  =  d  ->  (
c `  (/) )  =  ( d `  (/) ) )
1716eleq1d 2349 . . . . . . . . 9  |-  ( c  =  d  ->  (
( c `  (/) )  e.  ( 0 ... k
)  <->  ( d `  (/) )  e.  ( 0 ... k ) ) )
1817cbvrabv 2787 . . . . . . . 8  |-  { c  e.  ( NN0  ^m  1o )  |  (
c `  (/) )  e.  ( 0 ... k
) }  =  {
d  e.  ( NN0 
^m  1o )  |  ( d `  (/) )  e.  ( 0 ... k
) }
1915, 18syl6eqr 2333 . . . . . . 7  |-  ( k  e.  NN0  ->  { d  e.  ( NN0  ^m  1o )  |  d  o R  <_  ( 1o 
X.  { k } ) }  =  {
c  e.  ( NN0 
^m  1o )  |  ( c `  (/) )  e.  ( 0 ... k
) } )
204mptpreima 5166 . . . . . . 7  |-  ( `' ( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )
" ( 0 ... k ) )  =  { c  e.  ( NN0  ^m  1o )  |  ( c `  (/) )  e.  ( 0 ... k ) }
2119, 8, 203eqtr4g 2340 . . . . . 6  |-  ( k  e.  NN0  ->  H  =  ( `' ( c  e.  ( NN0  ^m  1o )  |->  ( c `
 (/) ) ) "
( 0 ... k
) ) )
2221imaeq2d 5012 . . . . 5  |-  ( k  e.  NN0  ->  ( ( c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )
" H )  =  ( ( c  e.  ( NN0  ^m  1o )  |->  ( c `  (/) ) ) " ( `' ( c  e.  ( NN0  ^m  1o )  |->  ( c `  (/) ) ) " (
0 ... k ) ) ) )
23 f1ofo 5479 . . . . . . 7  |-  ( ( c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) ) : ( NN0  ^m  1o ) -1-1-onto-> NN0  ->  ( c  e.  ( NN0  ^m  1o )  |->  ( c `  (/) ) ) : ( NN0  ^m  1o )
-onto->
NN0 )
245, 23ax-mp 8 . . . . . 6  |-  ( c  e.  ( NN0  ^m  1o )  |->  ( c `
 (/) ) ) : ( NN0  ^m  1o ) -onto-> NN0
25 elfznn0 10822 . . . . . . 7  |-  ( a  e.  ( 0 ... k )  ->  a  e.  NN0 )
2625ssriv 3184 . . . . . 6  |-  ( 0 ... k )  C_  NN0
27 foimacnv 5490 . . . . . 6  |-  ( ( ( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) ) : ( NN0  ^m  1o ) -onto-> NN0  /\  ( 0 ... k )  C_  NN0 )  ->  ( (
c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )
" ( `' ( c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )
" ( 0 ... k ) ) )  =  ( 0 ... k ) )
2824, 26, 27mp2an 653 . . . . 5  |-  ( ( c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )
" ( `' ( c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )
" ( 0 ... k ) ) )  =  ( 0 ... k )
2922, 28syl6eq 2331 . . . 4  |-  ( k  e.  NN0  ->  ( ( c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )
" H )  =  ( 0 ... k
) )
30 f1oeq3 5465 . . . 4  |-  ( ( ( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )
" H )  =  ( 0 ... k
)  ->  ( (
( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )  |`  H ) : H -1-1-onto-> (
( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )
" H )  <->  ( (
c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )  |`  H ) : H -1-1-onto-> (
0 ... k ) ) )
3129, 30syl 15 . . 3  |-  ( k  e.  NN0  ->  ( ( ( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )  |`  H ) : H -1-1-onto-> (
( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )
" H )  <->  ( (
c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )  |`  H ) : H -1-1-onto-> (
0 ... k ) ) )
32 resmpt 5000 . . . 4  |-  ( H 
C_  ( NN0  ^m  1o )  ->  ( ( c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )  |`  H )  =  ( c  e.  H  |->  ( c `  (/) ) ) )
33 f1oeq1 5463 . . . 4  |-  ( ( ( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )  |`  H )  =  ( c  e.  H  |->  ( c `  (/) ) )  ->  ( ( ( c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )  |`  H ) : H -1-1-onto-> (
0 ... k )  <->  ( c  e.  H  |->  ( c `
 (/) ) ) : H -1-1-onto-> ( 0 ... k
) ) )
3411, 32, 333syl 18 . . 3  |-  ( k  e.  NN0  ->  ( ( ( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )  |`  H ) : H -1-1-onto-> (
0 ... k )  <->  ( c  e.  H  |->  ( c `
 (/) ) ) : H -1-1-onto-> ( 0 ... k
) ) )
3531, 34bitrd 244 . 2  |-  ( k  e.  NN0  ->  ( ( ( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )  |`  H ) : H -1-1-onto-> (
( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )
" H )  <->  ( c  e.  H  |->  ( c `
 (/) ) ) : H -1-1-onto-> ( 0 ... k
) ) )
3613, 35mpbid 201 1  |-  ( k  e.  NN0  ->  ( c  e.  H  |->  ( c `
 (/) ) ) : H -1-1-onto-> ( 0 ... k
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1623    e. wcel 1684   {crab 2547    C_ wss 3152   (/)c0 3455   {csn 3640   class class class wbr 4023    e. cmpt 4077    X. cxp 4687   `'ccnv 4688    |` cres 4691   "cima 4692   -1-1->wf1 5252   -onto->wfo 5253   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858    o Rcofr 6077   1oc1o 6472    ^m cmap 6772   0cc0 8737    <_ cle 8868   NN0cn0 9965   ...cfz 10782
This theorem is referenced by:  coe1mul2  16346
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-ofr 6079  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783
  Copyright terms: Public domain W3C validator