MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1mul2lem2 Unicode version

Theorem coe1mul2lem2 16361
Description: An equivalence for coe1mul2 16362. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypothesis
Ref Expression
coe1mul2lem2.h  |-  H  =  { d  e.  ( NN0  ^m  1o )  |  d  o R  <_  ( 1o  X.  { k } ) }
Assertion
Ref Expression
coe1mul2lem2  |-  ( k  e.  NN0  ->  ( c  e.  H  |->  ( c `
 (/) ) ) : H -1-1-onto-> ( 0 ... k
) )
Distinct variable groups:    H, c    c, d, k
Allowed substitution hints:    H( k, d)

Proof of Theorem coe1mul2lem2
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 df1o2 6507 . . . . 5  |-  1o  =  { (/) }
2 nn0ex 9987 . . . . 5  |-  NN0  e.  _V
3 0ex 4166 . . . . 5  |-  (/)  e.  _V
4 eqid 2296 . . . . 5  |-  ( c  e.  ( NN0  ^m  1o )  |->  ( c `
 (/) ) )  =  ( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )
51, 2, 3, 4mapsnf1o2 6831 . . . 4  |-  ( c  e.  ( NN0  ^m  1o )  |->  ( c `
 (/) ) ) : ( NN0  ^m  1o )
-1-1-onto-> NN0
6 f1of1 5487 . . . 4  |-  ( ( c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) ) : ( NN0  ^m  1o ) -1-1-onto-> NN0  ->  ( c  e.  ( NN0  ^m  1o )  |->  ( c `  (/) ) ) : ( NN0  ^m  1o )
-1-1-> NN0 )
75, 6ax-mp 8 . . 3  |-  ( c  e.  ( NN0  ^m  1o )  |->  ( c `
 (/) ) ) : ( NN0  ^m  1o ) -1-1-> NN0
8 coe1mul2lem2.h . . . . 5  |-  H  =  { d  e.  ( NN0  ^m  1o )  |  d  o R  <_  ( 1o  X.  { k } ) }
9 ssrab2 3271 . . . . 5  |-  { d  e.  ( NN0  ^m  1o )  |  d  o R  <_  ( 1o 
X.  { k } ) }  C_  ( NN0  ^m  1o )
108, 9eqsstri 3221 . . . 4  |-  H  C_  ( NN0  ^m  1o )
1110a1i 10 . . 3  |-  ( k  e.  NN0  ->  H  C_  ( NN0  ^m  1o ) )
12 f1ores 5503 . . 3  |-  ( ( ( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) ) : ( NN0  ^m  1o ) -1-1-> NN0  /\  H  C_  ( NN0  ^m  1o ) )  ->  ( (
c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )  |`  H ) : H -1-1-onto-> (
( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )
" H ) )
137, 11, 12sylancr 644 . 2  |-  ( k  e.  NN0  ->  ( ( c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )  |`  H ) : H -1-1-onto-> (
( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )
" H ) )
14 coe1mul2lem1 16360 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  d  e.  ( NN0  ^m  1o ) )  -> 
( d  o R  <_  ( 1o  X.  { k } )  <-> 
( d `  (/) )  e.  ( 0 ... k
) ) )
1514rabbidva 2792 . . . . . . . 8  |-  ( k  e.  NN0  ->  { d  e.  ( NN0  ^m  1o )  |  d  o R  <_  ( 1o 
X.  { k } ) }  =  {
d  e.  ( NN0 
^m  1o )  |  ( d `  (/) )  e.  ( 0 ... k
) } )
16 fveq1 5540 . . . . . . . . . 10  |-  ( c  =  d  ->  (
c `  (/) )  =  ( d `  (/) ) )
1716eleq1d 2362 . . . . . . . . 9  |-  ( c  =  d  ->  (
( c `  (/) )  e.  ( 0 ... k
)  <->  ( d `  (/) )  e.  ( 0 ... k ) ) )
1817cbvrabv 2800 . . . . . . . 8  |-  { c  e.  ( NN0  ^m  1o )  |  (
c `  (/) )  e.  ( 0 ... k
) }  =  {
d  e.  ( NN0 
^m  1o )  |  ( d `  (/) )  e.  ( 0 ... k
) }
1915, 18syl6eqr 2346 . . . . . . 7  |-  ( k  e.  NN0  ->  { d  e.  ( NN0  ^m  1o )  |  d  o R  <_  ( 1o 
X.  { k } ) }  =  {
c  e.  ( NN0 
^m  1o )  |  ( c `  (/) )  e.  ( 0 ... k
) } )
204mptpreima 5182 . . . . . . 7  |-  ( `' ( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )
" ( 0 ... k ) )  =  { c  e.  ( NN0  ^m  1o )  |  ( c `  (/) )  e.  ( 0 ... k ) }
2119, 8, 203eqtr4g 2353 . . . . . 6  |-  ( k  e.  NN0  ->  H  =  ( `' ( c  e.  ( NN0  ^m  1o )  |->  ( c `
 (/) ) ) "
( 0 ... k
) ) )
2221imaeq2d 5028 . . . . 5  |-  ( k  e.  NN0  ->  ( ( c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )
" H )  =  ( ( c  e.  ( NN0  ^m  1o )  |->  ( c `  (/) ) ) " ( `' ( c  e.  ( NN0  ^m  1o )  |->  ( c `  (/) ) ) " (
0 ... k ) ) ) )
23 f1ofo 5495 . . . . . . 7  |-  ( ( c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) ) : ( NN0  ^m  1o ) -1-1-onto-> NN0  ->  ( c  e.  ( NN0  ^m  1o )  |->  ( c `  (/) ) ) : ( NN0  ^m  1o )
-onto->
NN0 )
245, 23ax-mp 8 . . . . . 6  |-  ( c  e.  ( NN0  ^m  1o )  |->  ( c `
 (/) ) ) : ( NN0  ^m  1o ) -onto-> NN0
25 elfznn0 10838 . . . . . . 7  |-  ( a  e.  ( 0 ... k )  ->  a  e.  NN0 )
2625ssriv 3197 . . . . . 6  |-  ( 0 ... k )  C_  NN0
27 foimacnv 5506 . . . . . 6  |-  ( ( ( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) ) : ( NN0  ^m  1o ) -onto-> NN0  /\  ( 0 ... k )  C_  NN0 )  ->  ( (
c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )
" ( `' ( c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )
" ( 0 ... k ) ) )  =  ( 0 ... k ) )
2824, 26, 27mp2an 653 . . . . 5  |-  ( ( c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )
" ( `' ( c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )
" ( 0 ... k ) ) )  =  ( 0 ... k )
2922, 28syl6eq 2344 . . . 4  |-  ( k  e.  NN0  ->  ( ( c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )
" H )  =  ( 0 ... k
) )
30 f1oeq3 5481 . . . 4  |-  ( ( ( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )
" H )  =  ( 0 ... k
)  ->  ( (
( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )  |`  H ) : H -1-1-onto-> (
( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )
" H )  <->  ( (
c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )  |`  H ) : H -1-1-onto-> (
0 ... k ) ) )
3129, 30syl 15 . . 3  |-  ( k  e.  NN0  ->  ( ( ( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )  |`  H ) : H -1-1-onto-> (
( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )
" H )  <->  ( (
c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )  |`  H ) : H -1-1-onto-> (
0 ... k ) ) )
32 resmpt 5016 . . . 4  |-  ( H 
C_  ( NN0  ^m  1o )  ->  ( ( c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )  |`  H )  =  ( c  e.  H  |->  ( c `  (/) ) ) )
33 f1oeq1 5479 . . . 4  |-  ( ( ( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )  |`  H )  =  ( c  e.  H  |->  ( c `  (/) ) )  ->  ( ( ( c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )  |`  H ) : H -1-1-onto-> (
0 ... k )  <->  ( c  e.  H  |->  ( c `
 (/) ) ) : H -1-1-onto-> ( 0 ... k
) ) )
3411, 32, 333syl 18 . . 3  |-  ( k  e.  NN0  ->  ( ( ( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )  |`  H ) : H -1-1-onto-> (
0 ... k )  <->  ( c  e.  H  |->  ( c `
 (/) ) ) : H -1-1-onto-> ( 0 ... k
) ) )
3531, 34bitrd 244 . 2  |-  ( k  e.  NN0  ->  ( ( ( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )  |`  H ) : H -1-1-onto-> (
( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )
" H )  <->  ( c  e.  H  |->  ( c `
 (/) ) ) : H -1-1-onto-> ( 0 ... k
) ) )
3613, 35mpbid 201 1  |-  ( k  e.  NN0  ->  ( c  e.  H  |->  ( c `
 (/) ) ) : H -1-1-onto-> ( 0 ... k
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1632    e. wcel 1696   {crab 2560    C_ wss 3165   (/)c0 3468   {csn 3653   class class class wbr 4039    e. cmpt 4093    X. cxp 4703   `'ccnv 4704    |` cres 4707   "cima 4708   -1-1->wf1 5268   -onto->wfo 5269   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5874    o Rcofr 6093   1oc1o 6488    ^m cmap 6788   0cc0 8753    <_ cle 8884   NN0cn0 9981   ...cfz 10798
This theorem is referenced by:  coe1mul2  16362
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-ofr 6095  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799
  Copyright terms: Public domain W3C validator