MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1sclmulfv Unicode version

Theorem coe1sclmulfv 16375
Description: A single coefficient of a polynomial multiplied on the left by a scalar. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
coe1sclmul.p  |-  P  =  (Poly1 `  R )
coe1sclmul.b  |-  B  =  ( Base `  P
)
coe1sclmul.k  |-  K  =  ( Base `  R
)
coe1sclmul.a  |-  A  =  (algSc `  P )
coe1sclmul.t  |-  .xb  =  ( .r `  P )
coe1sclmul.u  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
coe1sclmulfv  |-  ( ( R  e.  Ring  /\  ( X  e.  K  /\  Y  e.  B )  /\  .0.  e.  NN0 )  ->  ( (coe1 `  ( ( A `
 X )  .xb  Y ) ) `  .0.  )  =  ( X  .x.  ( (coe1 `  Y
) `  .0.  )
) )

Proof of Theorem coe1sclmulfv
StepHypRef Expression
1 coe1sclmul.p . . . . . 6  |-  P  =  (Poly1 `  R )
2 coe1sclmul.b . . . . . 6  |-  B  =  ( Base `  P
)
3 coe1sclmul.k . . . . . 6  |-  K  =  ( Base `  R
)
4 coe1sclmul.a . . . . . 6  |-  A  =  (algSc `  P )
5 coe1sclmul.t . . . . . 6  |-  .xb  =  ( .r `  P )
6 coe1sclmul.u . . . . . 6  |-  .x.  =  ( .r `  R )
71, 2, 3, 4, 5, 6coe1sclmul 16374 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  K  /\  Y  e.  B )  ->  (coe1 `  ( ( A `  X )  .xb  Y
) )  =  ( ( NN0  X.  { X } )  o F 
.x.  (coe1 `  Y ) ) )
873expb 1152 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  K  /\  Y  e.  B )
)  ->  (coe1 `  (
( A `  X
)  .xb  Y )
)  =  ( ( NN0  X.  { X } )  o F 
.x.  (coe1 `  Y ) ) )
983adant3 975 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  K  /\  Y  e.  B )  /\  .0.  e.  NN0 )  ->  (coe1 `  ( ( A `
 X )  .xb  Y ) )  =  ( ( NN0  X.  { X } )  o F  .x.  (coe1 `  Y
) ) )
109fveq1d 5543 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  K  /\  Y  e.  B )  /\  .0.  e.  NN0 )  ->  ( (coe1 `  ( ( A `
 X )  .xb  Y ) ) `  .0.  )  =  (
( ( NN0  X.  { X } )  o F  .x.  (coe1 `  Y
) ) `  .0.  ) )
11 simp3 957 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  K  /\  Y  e.  B )  /\  .0.  e.  NN0 )  ->  .0.  e.  NN0 )
12 nn0ex 9987 . . . . 5  |-  NN0  e.  _V
1312a1i 10 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  K  /\  Y  e.  B )  /\  .0.  e.  NN0 )  ->  NN0  e.  _V )
14 simp2l 981 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  K  /\  Y  e.  B )  /\  .0.  e.  NN0 )  ->  X  e.  K )
15 simp2r 982 . . . . 5  |-  ( ( R  e.  Ring  /\  ( X  e.  K  /\  Y  e.  B )  /\  .0.  e.  NN0 )  ->  Y  e.  B )
16 eqid 2296 . . . . . 6  |-  (coe1 `  Y
)  =  (coe1 `  Y
)
17 eqid 2296 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
1816, 2, 1, 17coe1f 16308 . . . . 5  |-  ( Y  e.  B  ->  (coe1 `  Y ) : NN0 --> (
Base `  R )
)
19 ffn 5405 . . . . 5  |-  ( (coe1 `  Y ) : NN0 --> (
Base `  R )  ->  (coe1 `  Y )  Fn 
NN0 )
2015, 18, 193syl 18 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  K  /\  Y  e.  B )  /\  .0.  e.  NN0 )  ->  (coe1 `  Y )  Fn 
NN0 )
21 eqidd 2297 . . . 4  |-  ( ( ( R  e.  Ring  /\  ( X  e.  K  /\  Y  e.  B
)  /\  .0.  e.  NN0 )  /\  .0.  e.  NN0 )  ->  ( (coe1 `  Y ) `  .0.  )  =  ( (coe1 `  Y ) `  .0.  ) )
2213, 14, 20, 21ofc1 6116 . . 3  |-  ( ( ( R  e.  Ring  /\  ( X  e.  K  /\  Y  e.  B
)  /\  .0.  e.  NN0 )  /\  .0.  e.  NN0 )  ->  ( (
( NN0  X.  { X } )  o F 
.x.  (coe1 `  Y ) ) `
 .0.  )  =  ( X  .x.  (
(coe1 `  Y ) `  .0.  ) ) )
2311, 22mpdan 649 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  K  /\  Y  e.  B )  /\  .0.  e.  NN0 )  ->  ( ( ( NN0 
X.  { X }
)  o F  .x.  (coe1 `  Y ) ) `  .0.  )  =  ( X  .x.  ( (coe1 `  Y
) `  .0.  )
) )
2410, 23eqtrd 2328 1  |-  ( ( R  e.  Ring  /\  ( X  e.  K  /\  Y  e.  B )  /\  .0.  e.  NN0 )  ->  ( (coe1 `  ( ( A `
 X )  .xb  Y ) ) `  .0.  )  =  ( X  .x.  ( (coe1 `  Y
) `  .0.  )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   _Vcvv 2801   {csn 3653    X. cxp 4703    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874    o Fcof 6092   NN0cn0 9981   Basecbs 13164   .rcmulr 13225   Ringcrg 15353  algSccascl 16068  Poly1cpl1 16268  coe1cco1 16271
This theorem is referenced by:  deg1mul3le  19518  hbtlem2  27431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-ofr 6095  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-fzo 10887  df-seq 11063  df-hash 11354  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-0g 13420  df-gsum 13421  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-mhm 14431  df-submnd 14432  df-grp 14505  df-minusg 14506  df-sbg 14507  df-mulg 14508  df-subg 14634  df-ghm 14697  df-cntz 14809  df-cmn 15107  df-abl 15108  df-mgp 15342  df-rng 15356  df-ur 15358  df-subrg 15559  df-lmod 15645  df-lss 15706  df-ascl 16071  df-psr 16114  df-mvr 16115  df-mpl 16116  df-opsr 16122  df-psr1 16273  df-vr1 16274  df-ply1 16275  df-coe1 16278
  Copyright terms: Public domain W3C validator