MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1subfv Unicode version

Theorem coe1subfv 16343
Description: A particular coefficient of a subtraction. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
coe1sub.y  |-  Y  =  (Poly1 `  R )
coe1sub.b  |-  B  =  ( Base `  Y
)
coe1sub.p  |-  .-  =  ( -g `  Y )
coe1sub.q  |-  N  =  ( -g `  R
)
Assertion
Ref Expression
coe1subfv  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  ( (coe1 `  ( F  .-  G ) ) `
 X )  =  ( ( (coe1 `  F
) `  X ) N ( (coe1 `  G
) `  X )
) )

Proof of Theorem coe1subfv
StepHypRef Expression
1 simpl1 958 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  R  e.  Ring )
2 coe1sub.y . . . . . . . . 9  |-  Y  =  (Poly1 `  R )
32ply1rng 16326 . . . . . . . 8  |-  ( R  e.  Ring  ->  Y  e. 
Ring )
4 rnggrp 15346 . . . . . . . 8  |-  ( Y  e.  Ring  ->  Y  e. 
Grp )
53, 4syl 15 . . . . . . 7  |-  ( R  e.  Ring  ->  Y  e. 
Grp )
6 coe1sub.b . . . . . . . 8  |-  B  =  ( Base `  Y
)
7 coe1sub.p . . . . . . . 8  |-  .-  =  ( -g `  Y )
86, 7grpsubcl 14546 . . . . . . 7  |-  ( ( Y  e.  Grp  /\  F  e.  B  /\  G  e.  B )  ->  ( F  .-  G
)  e.  B )
95, 8syl3an1 1215 . . . . . 6  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( F  .-  G )  e.  B )
109adantr 451 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  ( F  .-  G )  e.  B
)
11 simpl3 960 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  G  e.  B
)
12 simpr 447 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  X  e.  NN0 )
13 eqid 2283 . . . . . 6  |-  ( +g  `  Y )  =  ( +g  `  Y )
14 eqid 2283 . . . . . 6  |-  ( +g  `  R )  =  ( +g  `  R )
152, 6, 13, 14coe1addfv 16342 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( F  .-  G
)  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  ( (coe1 `  (
( F  .-  G
) ( +g  `  Y
) G ) ) `
 X )  =  ( ( (coe1 `  ( F  .-  G ) ) `
 X ) ( +g  `  R ) ( (coe1 `  G ) `  X ) ) )
161, 10, 11, 12, 15syl31anc 1185 . . . 4  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  ( (coe1 `  (
( F  .-  G
) ( +g  `  Y
) G ) ) `
 X )  =  ( ( (coe1 `  ( F  .-  G ) ) `
 X ) ( +g  `  R ) ( (coe1 `  G ) `  X ) ) )
1753ad2ant1 976 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  Y  e.  Grp )
1817adantr 451 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  Y  e.  Grp )
19 simpl2 959 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  F  e.  B
)
206, 13, 7grpnpcan 14557 . . . . . . 7  |-  ( ( Y  e.  Grp  /\  F  e.  B  /\  G  e.  B )  ->  ( ( F  .-  G ) ( +g  `  Y ) G )  =  F )
2118, 19, 11, 20syl3anc 1182 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  ( ( F 
.-  G ) ( +g  `  Y ) G )  =  F )
2221fveq2d 5529 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  (coe1 `  ( ( F 
.-  G ) ( +g  `  Y ) G ) )  =  (coe1 `  F ) )
2322fveq1d 5527 . . . 4  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  ( (coe1 `  (
( F  .-  G
) ( +g  `  Y
) G ) ) `
 X )  =  ( (coe1 `  F ) `  X ) )
2416, 23eqtr3d 2317 . . 3  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  ( ( (coe1 `  ( F  .-  G
) ) `  X
) ( +g  `  R
) ( (coe1 `  G
) `  X )
)  =  ( (coe1 `  F ) `  X
) )
25 rnggrp 15346 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Grp )
26253ad2ant1 976 . . . . 5  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  R  e.  Grp )
2726adantr 451 . . . 4  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  R  e.  Grp )
28 eqid 2283 . . . . . . 7  |-  (coe1 `  F
)  =  (coe1 `  F
)
29 eqid 2283 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
3028, 6, 2, 29coe1f 16292 . . . . . 6  |-  ( F  e.  B  ->  (coe1 `  F ) : NN0 --> (
Base `  R )
)
31303ad2ant2 977 . . . . 5  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (coe1 `  F ) : NN0 --> (
Base `  R )
)
32 ffvelrn 5663 . . . . 5  |-  ( ( (coe1 `  F ) : NN0 --> ( Base `  R
)  /\  X  e.  NN0 )  ->  ( (coe1 `  F ) `  X
)  e.  ( Base `  R ) )
3331, 32sylan 457 . . . 4  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  ( (coe1 `  F
) `  X )  e.  ( Base `  R
) )
34 eqid 2283 . . . . . . 7  |-  (coe1 `  G
)  =  (coe1 `  G
)
3534, 6, 2, 29coe1f 16292 . . . . . 6  |-  ( G  e.  B  ->  (coe1 `  G ) : NN0 --> (
Base `  R )
)
36353ad2ant3 978 . . . . 5  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (coe1 `  G ) : NN0 --> (
Base `  R )
)
37 ffvelrn 5663 . . . . 5  |-  ( ( (coe1 `  G ) : NN0 --> ( Base `  R
)  /\  X  e.  NN0 )  ->  ( (coe1 `  G ) `  X
)  e.  ( Base `  R ) )
3836, 37sylan 457 . . . 4  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  ( (coe1 `  G
) `  X )  e.  ( Base `  R
) )
39 eqid 2283 . . . . . . 7  |-  (coe1 `  ( F  .-  G ) )  =  (coe1 `  ( F  .-  G ) )
4039, 6, 2, 29coe1f 16292 . . . . . 6  |-  ( ( F  .-  G )  e.  B  ->  (coe1 `  ( F  .-  G ) ) : NN0 --> ( Base `  R ) )
419, 40syl 15 . . . . 5  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (coe1 `  ( F  .-  G ) ) : NN0 --> ( Base `  R ) )
42 ffvelrn 5663 . . . . 5  |-  ( ( (coe1 `  ( F  .-  G ) ) : NN0 --> ( Base `  R
)  /\  X  e.  NN0 )  ->  ( (coe1 `  ( F  .-  G ) ) `  X )  e.  ( Base `  R
) )
4341, 42sylan 457 . . . 4  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  ( (coe1 `  ( F  .-  G ) ) `
 X )  e.  ( Base `  R
) )
44 coe1sub.q . . . . 5  |-  N  =  ( -g `  R
)
4529, 14, 44grpsubadd 14553 . . . 4  |-  ( ( R  e.  Grp  /\  ( ( (coe1 `  F
) `  X )  e.  ( Base `  R
)  /\  ( (coe1 `  G ) `  X
)  e.  ( Base `  R )  /\  (
(coe1 `  ( F  .-  G ) ) `  X )  e.  (
Base `  R )
) )  ->  (
( ( (coe1 `  F
) `  X ) N ( (coe1 `  G
) `  X )
)  =  ( (coe1 `  ( F  .-  G
) ) `  X
)  <->  ( ( (coe1 `  ( F  .-  G
) ) `  X
) ( +g  `  R
) ( (coe1 `  G
) `  X )
)  =  ( (coe1 `  F ) `  X
) ) )
4627, 33, 38, 43, 45syl13anc 1184 . . 3  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  ( ( ( (coe1 `  F ) `  X ) N ( (coe1 `  G ) `  X ) )  =  ( (coe1 `  ( F  .-  G ) ) `  X )  <->  ( (
(coe1 `  ( F  .-  G ) ) `  X ) ( +g  `  R ) ( (coe1 `  G ) `  X
) )  =  ( (coe1 `  F ) `  X ) ) )
4724, 46mpbird 223 . 2  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  ( ( (coe1 `  F ) `  X
) N ( (coe1 `  G ) `  X
) )  =  ( (coe1 `  ( F  .-  G ) ) `  X ) )
4847eqcomd 2288 1  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  ( (coe1 `  ( F  .-  G ) ) `
 X )  =  ( ( (coe1 `  F
) `  X ) N ( (coe1 `  G
) `  X )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   -->wf 5251   ` cfv 5255  (class class class)co 5858   NN0cn0 9965   Basecbs 13148   +g cplusg 13208   Grpcgrp 14362   -gcsg 14365   Ringcrg 15337  Poly1cpl1 16252  coe1cco1 16255
This theorem is referenced by:  deg1sublt  19496  ply1remlem  19548
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-ofr 6079  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-fzo 10871  df-seq 11047  df-hash 11338  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-0g 13404  df-gsum 13405  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-mhm 14415  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mulg 14492  df-subg 14618  df-ghm 14681  df-cntz 14793  df-cmn 15091  df-abl 15092  df-mgp 15326  df-rng 15340  df-ur 15342  df-subrg 15543  df-psr 16098  df-mpl 16100  df-opsr 16106  df-psr1 16257  df-ply1 16259  df-coe1 16262
  Copyright terms: Public domain W3C validator