MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1termlem Unicode version

Theorem coe1termlem 20043
Description: The coefficient function of a monomial. (Contributed by Mario Carneiro, 26-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
coe1term.1  |-  F  =  ( z  e.  CC  |->  ( A  x.  (
z ^ N ) ) )
Assertion
Ref Expression
coe1termlem  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( (coeff `  F
)  =  ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) )  /\  ( A  =/=  0  ->  (deg `  F )  =  N ) ) )
Distinct variable groups:    z, n, A    n, N, z
Allowed substitution hints:    F( z, n)

Proof of Theorem coe1termlem
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 ssid 3310 . . . 4  |-  CC  C_  CC
2 coe1term.1 . . . . 5  |-  F  =  ( z  e.  CC  |->  ( A  x.  (
z ^ N ) ) )
32ply1term 19990 . . . 4  |-  ( ( CC  C_  CC  /\  A  e.  CC  /\  N  e. 
NN0 )  ->  F  e.  (Poly `  CC )
)
41, 3mp3an1 1266 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  F  e.  (Poly `  CC ) )
5 simpr 448 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  N  e.  NN0 )
6 simpl 444 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  A  e.  CC )
7 0cn 9017 . . . . . 6  |-  0  e.  CC
8 ifcl 3718 . . . . . 6  |-  ( ( A  e.  CC  /\  0  e.  CC )  ->  if ( n  =  N ,  A , 
0 )  e.  CC )
96, 7, 8sylancl 644 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  if ( n  =  N ,  A ,  0 )  e.  CC )
109adantr 452 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  if ( n  =  N ,  A ,  0 )  e.  CC )
11 eqid 2387 . . . 4  |-  ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) )  =  ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) )
1210, 11fmptd 5832 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) : NN0 --> CC )
13 simpr 448 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  NN0 )  ->  k  e.  NN0 )
14 ifcl 3718 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  0  e.  CC )  ->  if ( k  =  N ,  A , 
0 )  e.  CC )
156, 7, 14sylancl 644 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  if ( k  =  N ,  A ,  0 )  e.  CC )
1615adantr 452 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  NN0 )  ->  if ( k  =  N ,  A ,  0 )  e.  CC )
17 eqeq1 2393 . . . . . . . . . 10  |-  ( n  =  k  ->  (
n  =  N  <->  k  =  N ) )
1817ifbid 3700 . . . . . . . . 9  |-  ( n  =  k  ->  if ( n  =  N ,  A ,  0 )  =  if ( k  =  N ,  A ,  0 ) )
1918, 11fvmptg 5743 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  if ( k  =  N ,  A ,  0 )  e.  CC )  ->  ( ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) `  k )  =  if ( k  =  N ,  A ,  0 ) )
2013, 16, 19syl2anc 643 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) `  k )  =  if ( k  =  N ,  A ,  0 ) )
2120neeq1d 2563 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) `  k )  =/=  0  <->  if (
k  =  N ,  A ,  0 )  =/=  0 ) )
22 nn0re 10162 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e.  RR )
2322leidd 9525 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  <_  N )
2423ad2antlr 708 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  NN0 )  ->  N  <_  N
)
25 iffalse 3689 . . . . . . . . 9  |-  ( -.  k  =  N  ->  if ( k  =  N ,  A ,  0 )  =  0 )
2625necon1ai 2592 . . . . . . . 8  |-  ( if ( k  =  N ,  A ,  0 )  =/=  0  -> 
k  =  N )
2726breq1d 4163 . . . . . . 7  |-  ( if ( k  =  N ,  A ,  0 )  =/=  0  -> 
( k  <_  N  <->  N  <_  N ) )
2824, 27syl5ibrcom 214 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  NN0 )  ->  ( if ( k  =  N ,  A ,  0 )  =/=  0  ->  k  <_  N ) )
2921, 28sylbid 207 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) `  k )  =/=  0  ->  k  <_  N ) )
3029ralrimiva 2732 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  A. k  e.  NN0  ( ( ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) `  k )  =/=  0  ->  k  <_  N ) )
31 plyco0 19978 . . . . 5  |-  ( ( N  e.  NN0  /\  ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) : NN0 --> CC )  ->  ( (
( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 }  <->  A. k  e.  NN0  ( ( ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) `  k )  =/=  0  ->  k  <_  N ) ) )
325, 12, 31syl2anc 643 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) " ( ZZ>= `  ( N  +  1
) ) )  =  { 0 }  <->  A. k  e.  NN0  ( ( ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) `  k )  =/=  0  ->  k  <_  N ) ) )
3330, 32mpbird 224 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  if ( n  =  N ,  A ,  0 ) )
" ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )
342ply1termlem 19989 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( if ( k  =  N ,  A ,  0 )  x.  ( z ^ k
) ) ) )
35 elfznn0 11015 . . . . . . 7  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
3620oveq1d 6035 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  NN0 )  ->  ( ( ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) `  k )  x.  ( z ^
k ) )  =  ( if ( k  =  N ,  A ,  0 )  x.  ( z ^ k
) ) )
3735, 36sylan2 461 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... N ) )  ->  ( ( ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) `  k )  x.  ( z ^
k ) )  =  ( if ( k  =  N ,  A ,  0 )  x.  ( z ^ k
) ) )
3837sumeq2dv 12424 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  sum_ k  e.  ( 0 ... N ) ( ( ( n  e. 
NN0  |->  if ( n  =  N ,  A ,  0 ) ) `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... N ) ( if ( k  =  N ,  A , 
0 )  x.  (
z ^ k ) ) )
3938mpteq2dv 4237 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( n  e. 
NN0  |->  if ( n  =  N ,  A ,  0 ) ) `
 k )  x.  ( z ^ k
) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( if ( k  =  N ,  A , 
0 )  x.  (
z ^ k ) ) ) )
4034, 39eqtr4d 2422 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) `  k )  x.  ( z ^
k ) ) ) )
414, 5, 12, 33, 40coeeq 20013 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
(coeff `  F )  =  ( n  e. 
NN0  |->  if ( n  =  N ,  A ,  0 ) ) )
424adantr 452 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  A  =/=  0
)  ->  F  e.  (Poly `  CC ) )
435adantr 452 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  A  =/=  0
)  ->  N  e.  NN0 )
4412adantr 452 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  A  =/=  0
)  ->  ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) : NN0 --> CC )
4533adantr 452 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  A  =/=  0
)  ->  ( (
n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) " ( ZZ>= `  ( N  +  1
) ) )  =  { 0 } )
4640adantr 452 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  A  =/=  0
)  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( n  e. 
NN0  |->  if ( n  =  N ,  A ,  0 ) ) `
 k )  x.  ( z ^ k
) ) ) )
47 iftrue 3688 . . . . . . . 8  |-  ( n  =  N  ->  if ( n  =  N ,  A ,  0 )  =  A )
4847, 11fvmptg 5743 . . . . . . 7  |-  ( ( N  e.  NN0  /\  A  e.  CC )  ->  ( ( n  e. 
NN0  |->  if ( n  =  N ,  A ,  0 ) ) `
 N )  =  A )
4948ancoms 440 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  if ( n  =  N ,  A ,  0 ) ) `
 N )  =  A )
5049neeq1d 2563 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) `  N )  =/=  0  <->  A  =/=  0 ) )
5150biimpar 472 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  A  =/=  0
)  ->  ( (
n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) ) `  N )  =/=  0 )
5242, 43, 44, 45, 46, 51dgreq 20030 . . 3  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  A  =/=  0
)  ->  (deg `  F
)  =  N )
5352ex 424 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( A  =/=  0  ->  (deg `  F )  =  N ) )
5441, 53jca 519 1  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( (coeff `  F
)  =  ( n  e.  NN0  |->  if ( n  =  N ,  A ,  0 ) )  /\  ( A  =/=  0  ->  (deg `  F )  =  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2550   A.wral 2649    C_ wss 3263   ifcif 3682   {csn 3757   class class class wbr 4153    e. cmpt 4207   "cima 4821   -->wf 5390   ` cfv 5394  (class class class)co 6020   CCcc 8921   0cc0 8923   1c1 8924    + caddc 8926    x. cmul 8928    <_ cle 9054   NN0cn0 10153   ZZ>=cuz 10420   ...cfz 10975   ^cexp 11309   sum_csu 12406  Polycply 19970  coeffccoe 19972  degcdgr 19973
This theorem is referenced by:  coe1term  20044  dgr1term  20045
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001  ax-addf 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-of 6244  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-er 6841  df-map 6956  df-pm 6957  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-sup 7381  df-oi 7412  df-card 7759  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-n0 10154  df-z 10215  df-uz 10421  df-rp 10545  df-fz 10976  df-fzo 11066  df-fl 11129  df-seq 11251  df-exp 11310  df-hash 11546  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-clim 12209  df-rlim 12210  df-sum 12407  df-0p 19429  df-ply 19974  df-coe 19976  df-dgr 19977
  Copyright terms: Public domain W3C validator