MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeeq2 Structured version   Unicode version

Theorem coeeq2 20166
Description: Compute the coefficient function given a sum expression for the polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
dgrle.1  |-  ( ph  ->  F  e.  (Poly `  S ) )
dgrle.2  |-  ( ph  ->  N  e.  NN0 )
dgrle.3  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  A  e.  CC )
dgrle.4  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( A  x.  ( z ^ k
) ) ) )
Assertion
Ref Expression
coeeq2  |-  ( ph  ->  (coeff `  F )  =  ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) )
Distinct variable groups:    z, A    z, k, N    ph, k, z
Allowed substitution hints:    A( k)    S( z, k)    F( z, k)

Proof of Theorem coeeq2
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 dgrle.1 . 2  |-  ( ph  ->  F  e.  (Poly `  S ) )
2 dgrle.2 . 2  |-  ( ph  ->  N  e.  NN0 )
3 simpll 732 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <_  N )  ->  ph )
4 simpr 449 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <_  N )  ->  k  <_  N )
5 simplr 733 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <_  N )  ->  k  e.  NN0 )
6 nn0uz 10525 . . . . . . . 8  |-  NN0  =  ( ZZ>= `  0 )
75, 6syl6eleq 2528 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <_  N )  ->  k  e.  ( ZZ>= `  0 )
)
82nn0zd 10378 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
98ad2antrr 708 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <_  N )  ->  N  e.  ZZ )
10 elfz5 11056 . . . . . . 7  |-  ( ( k  e.  ( ZZ>= ` 
0 )  /\  N  e.  ZZ )  ->  (
k  e.  ( 0 ... N )  <->  k  <_  N ) )
117, 9, 10syl2anc 644 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <_  N )  ->  (
k  e.  ( 0 ... N )  <->  k  <_  N ) )
124, 11mpbird 225 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <_  N )  ->  k  e.  ( 0 ... N
) )
13 dgrle.3 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  A  e.  CC )
143, 12, 13syl2anc 644 . . . 4  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <_  N )  ->  A  e.  CC )
15 0cn 9089 . . . . 5  |-  0  e.  CC
1615a1i 11 . . . 4  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  <_  N )  -> 
0  e.  CC )
1714, 16ifclda 3768 . . 3  |-  ( (
ph  /\  k  e.  NN0 )  ->  if (
k  <_  N ,  A ,  0 )  e.  CC )
18 eqid 2438 . . 3  |-  ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) )  =  ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) )
1917, 18fmptd 5896 . 2  |-  ( ph  ->  ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) : NN0 --> CC )
20 simpr 449 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  NN0 )
2118fvmpt2 5815 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  if ( k  <_  N ,  A ,  0 )  e.  CC )  -> 
( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 k )  =  if ( k  <_  N ,  A , 
0 ) )
2220, 17, 21syl2anc 644 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =  if ( k  <_  N ,  A ,  0 ) )
2322neeq1d 2616 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =/=  0  <->  if (
k  <_  N ,  A ,  0 )  =/=  0 ) )
24 iffalse 3748 . . . . . . 7  |-  ( -.  k  <_  N  ->  if ( k  <_  N ,  A ,  0 )  =  0 )
2524necon1ai 2648 . . . . . 6  |-  ( if ( k  <_  N ,  A ,  0 )  =/=  0  ->  k  <_  N )
2623, 25syl6bi 221 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =/=  0  ->  k  <_  N ) )
2726ralrimiva 2791 . . . 4  |-  ( ph  ->  A. k  e.  NN0  ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =/=  0  ->  k  <_  N ) )
28 nfv 1630 . . . . 5  |-  F/ m
( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =/=  0  ->  k  <_  N )
29 nffvmpt1 5739 . . . . . . 7  |-  F/_ k
( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 m )
30 nfcv 2574 . . . . . . 7  |-  F/_ k
0
3129, 30nfne 2697 . . . . . 6  |-  F/ k ( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 m )  =/=  0
32 nfv 1630 . . . . . 6  |-  F/ k  m  <_  N
3331, 32nfim 1833 . . . . 5  |-  F/ k ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  =/=  0  ->  m  <_  N )
34 fveq2 5731 . . . . . . 7  |-  ( k  =  m  ->  (
( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =  ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m ) )
3534neeq1d 2616 . . . . . 6  |-  ( k  =  m  ->  (
( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 k )  =/=  0  <->  ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  =/=  0 ) )
36 breq1 4218 . . . . . 6  |-  ( k  =  m  ->  (
k  <_  N  <->  m  <_  N ) )
3735, 36imbi12d 313 . . . . 5  |-  ( k  =  m  ->  (
( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =/=  0  ->  k  <_  N )  <->  ( (
( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  =/=  0  ->  m  <_  N ) ) )
3828, 33, 37cbvral 2930 . . . 4  |-  ( A. k  e.  NN0  ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =/=  0  ->  k  <_  N )  <->  A. m  e.  NN0  ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  =/=  0  ->  m  <_  N ) )
3927, 38sylib 190 . . 3  |-  ( ph  ->  A. m  e.  NN0  ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  =/=  0  ->  m  <_  N ) )
40 plyco0 20116 . . . 4  |-  ( ( N  e.  NN0  /\  ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) : NN0 --> CC )  ->  ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) " ( ZZ>= `  ( N  +  1
) ) )  =  { 0 }  <->  A. m  e.  NN0  ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  =/=  0  ->  m  <_  N ) ) )
412, 19, 40syl2anc 644 . . 3  |-  ( ph  ->  ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) " ( ZZ>= `  ( N  +  1
) ) )  =  { 0 }  <->  A. m  e.  NN0  ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  =/=  0  ->  m  <_  N ) ) )
4239, 41mpbird 225 . 2  |-  ( ph  ->  ( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) )
" ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 } )
43 dgrle.4 . . 3  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( A  x.  ( z ^ k
) ) ) )
44 nfcv 2574 . . . . . 6  |-  F/_ m
( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  x.  ( z ^
k ) )
45 nfcv 2574 . . . . . . 7  |-  F/_ k  x.
46 nfcv 2574 . . . . . . 7  |-  F/_ k
( z ^ m
)
4729, 45, 46nfov 6107 . . . . . 6  |-  F/_ k
( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  x.  ( z ^
m ) )
48 oveq2 6092 . . . . . . 7  |-  ( k  =  m  ->  (
z ^ k )  =  ( z ^
m ) )
4934, 48oveq12d 6102 . . . . . 6  |-  ( k  =  m  ->  (
( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 k )  x.  ( z ^ k
) )  =  ( ( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 m )  x.  ( z ^ m
) ) )
5044, 47, 49cbvsumi 12496 . . . . 5  |-  sum_ k  e.  ( 0 ... N
) ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  x.  ( z ^
k ) )  = 
sum_ m  e.  (
0 ... N ) ( ( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 m )  x.  ( z ^ m
) )
51 elfznn0 11088 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
5251adantl 454 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
53 elfzle2 11066 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... N )  ->  k  <_  N )
5453adantl 454 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  k  <_  N )
55 iftrue 3747 . . . . . . . . . . 11  |-  ( k  <_  N  ->  if ( k  <_  N ,  A ,  0 )  =  A )
5654, 55syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  if ( k  <_  N ,  A ,  0 )  =  A )
5713adantlr 697 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  A  e.  CC )
5856, 57eqeltrd 2512 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  if ( k  <_  N ,  A ,  0 )  e.  CC )
5952, 58, 21syl2anc 644 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =  if ( k  <_  N ,  A ,  0 ) )
6059, 56eqtrd 2470 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  =  A )
6160oveq1d 6099 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 k )  x.  ( z ^ k
) )  =  ( A  x.  ( z ^ k ) ) )
6261sumeq2dv 12502 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  k )  x.  ( z ^
k ) )  = 
sum_ k  e.  ( 0 ... N ) ( A  x.  (
z ^ k ) ) )
6350, 62syl5eqr 2484 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ m  e.  ( 0 ... N
) ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  x.  ( z ^
m ) )  = 
sum_ k  e.  ( 0 ... N ) ( A  x.  (
z ^ k ) ) )
6463mpteq2dva 4298 . . 3  |-  ( ph  ->  ( z  e.  CC  |->  sum_
m  e.  ( 0 ... N ) ( ( ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `
 m )  x.  ( z ^ m
) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( A  x.  ( z ^ k ) ) ) )
6543, 64eqtr4d 2473 . 2  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ m  e.  ( 0 ... N
) ( ( ( k  e.  NN0  |->  if ( k  <_  N ,  A ,  0 ) ) `  m )  x.  ( z ^
m ) ) ) )
661, 2, 19, 42, 65coeeq 20151 1  |-  ( ph  ->  (coeff `  F )  =  ( k  e. 
NN0  |->  if ( k  <_  N ,  A ,  0 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   ifcif 3741   {csn 3816   class class class wbr 4215    e. cmpt 4269   "cima 4884   -->wf 5453   ` cfv 5457  (class class class)co 6084   CCcc 8993   0cc0 8995   1c1 8996    + caddc 8998    x. cmul 9000    <_ cle 9126   NN0cn0 10226   ZZcz 10287   ZZ>=cuz 10493   ...cfz 11048   ^cexp 11387   sum_csu 12484  Polycply 20108  coeffccoe 20110
This theorem is referenced by:  dgrle  20167  aareccl  20248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073  ax-addf 9074
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-of 6308  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-oadd 6731  df-er 6908  df-map 7023  df-pm 7024  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-sup 7449  df-oi 7482  df-card 7831  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-n0 10227  df-z 10288  df-uz 10494  df-rp 10618  df-fz 11049  df-fzo 11141  df-fl 11207  df-seq 11329  df-exp 11388  df-hash 11624  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-clim 12287  df-rlim 12288  df-sum 12485  df-0p 19565  df-ply 20112  df-coe 20114
  Copyright terms: Public domain W3C validator