MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeeu Unicode version

Theorem coeeu 19822
Description: Uniqueness of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
coeeu  |-  ( F  e.  (Poly `  S
)  ->  E! a  e.  ( CC  ^m  NN0 ) E. n  e.  NN0  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
Distinct variable groups:    z, k    n, a, F    S, a, n    k, a, z, n
Allowed substitution hints:    S( z, k)    F( z, k)

Proof of Theorem coeeu
Dummy variables  b 
j  m  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyssc 19797 . . . . 5  |-  (Poly `  S )  C_  (Poly `  CC )
21sseli 3262 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  F  e.  (Poly `  CC ) )
3 elply2 19793 . . . . . 6  |-  ( F  e.  (Poly `  CC ) 
<->  ( CC  C_  CC  /\ 
E. n  e.  NN0  E. a  e.  ( ( CC  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) ) )
43simprbi 450 . . . . 5  |-  ( F  e.  (Poly `  CC )  ->  E. n  e.  NN0  E. a  e.  ( ( CC  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) )
5 rexcom 2786 . . . . 5  |-  ( E. n  e.  NN0  E. a  e.  ( ( CC  u.  { 0 } )  ^m  NN0 ) ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  <->  E. a  e.  ( ( CC  u.  { 0 } )  ^m  NN0 ) E. n  e. 
NN0  ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) )
64, 5sylib 188 . . . 4  |-  ( F  e.  (Poly `  CC )  ->  E. a  e.  ( ( CC  u.  {
0 } )  ^m  NN0 ) E. n  e. 
NN0  ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) )
72, 6syl 15 . . 3  |-  ( F  e.  (Poly `  S
)  ->  E. a  e.  ( ( CC  u.  { 0 } )  ^m  NN0 ) E. n  e. 
NN0  ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) )
8 0cn 8978 . . . . . . 7  |-  0  e.  CC
9 snssi 3857 . . . . . . 7  |-  ( 0  e.  CC  ->  { 0 }  C_  CC )
108, 9ax-mp 8 . . . . . 6  |-  { 0 }  C_  CC
11 ssequn2 3436 . . . . . 6  |-  ( { 0 }  C_  CC  <->  ( CC  u.  { 0 } )  =  CC )
1210, 11mpbi 199 . . . . 5  |-  ( CC  u.  { 0 } )  =  CC
1312oveq1i 5991 . . . 4  |-  ( ( CC  u.  { 0 } )  ^m  NN0 )  =  ( CC  ^m 
NN0 )
1413rexeqi 2826 . . 3  |-  ( E. a  e.  ( ( CC  u.  { 0 } )  ^m  NN0 ) E. n  e.  NN0  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  <->  E. a  e.  ( CC  ^m  NN0 ) E. n  e.  NN0  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
157, 14sylib 188 . 2  |-  ( F  e.  (Poly `  S
)  ->  E. a  e.  ( CC  ^m  NN0 ) E. n  e.  NN0  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
16 reeanv 2792 . . . 4  |-  ( E. n  e.  NN0  E. m  e.  NN0  ( ( ( a " ( ZZ>= `  ( n  +  1
) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) )  <->  ( E. n  e.  NN0  ( ( a " ( ZZ>= `  ( n  +  1
) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  E. m  e.  NN0  (
( b " ( ZZ>=
`  ( m  + 
1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )
17 simp1l 980 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  (
a  e.  ( CC 
^m  NN0 )  /\  b  e.  ( CC  ^m  NN0 ) ) )  /\  ( n  e.  NN0  /\  m  e.  NN0 )  /\  ( ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  F  e.  (Poly `  S ) )
18 simp1rl 1021 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  (
a  e.  ( CC 
^m  NN0 )  /\  b  e.  ( CC  ^m  NN0 ) ) )  /\  ( n  e.  NN0  /\  m  e.  NN0 )  /\  ( ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  a  e.  ( CC  ^m  NN0 )
)
19 simp1rr 1022 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  (
a  e.  ( CC 
^m  NN0 )  /\  b  e.  ( CC  ^m  NN0 ) ) )  /\  ( n  e.  NN0  /\  m  e.  NN0 )  /\  ( ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  b  e.  ( CC  ^m  NN0 )
)
20 simp2l 982 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  (
a  e.  ( CC 
^m  NN0 )  /\  b  e.  ( CC  ^m  NN0 ) ) )  /\  ( n  e.  NN0  /\  m  e.  NN0 )  /\  ( ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  n  e.  NN0 )
21 simp2r 983 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  (
a  e.  ( CC 
^m  NN0 )  /\  b  e.  ( CC  ^m  NN0 ) ) )  /\  ( n  e.  NN0  /\  m  e.  NN0 )  /\  ( ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  m  e.  NN0 )
22 simp3ll 1027 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  (
a  e.  ( CC 
^m  NN0 )  /\  b  e.  ( CC  ^m  NN0 ) ) )  /\  ( n  e.  NN0  /\  m  e.  NN0 )  /\  ( ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 } )
23 simp3rl 1029 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  (
a  e.  ( CC 
^m  NN0 )  /\  b  e.  ( CC  ^m  NN0 ) ) )  /\  ( n  e.  NN0  /\  m  e.  NN0 )  /\  ( ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  ( b "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 } )
24 simp3lr 1028 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  (
a  e.  ( CC 
^m  NN0 )  /\  b  e.  ( CC  ^m  NN0 ) ) )  /\  ( n  e.  NN0  /\  m  e.  NN0 )  /\  ( ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )
25 oveq1 5988 . . . . . . . . . . . 12  |-  ( z  =  w  ->  (
z ^ k )  =  ( w ^
k ) )
2625oveq2d 5997 . . . . . . . . . . 11  |-  ( z  =  w  ->  (
( a `  k
)  x.  ( z ^ k ) )  =  ( ( a `
 k )  x.  ( w ^ k
) ) )
2726sumeq2sdv 12385 . . . . . . . . . 10  |-  ( z  =  w  ->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( w ^ k ) ) )
28 fveq2 5632 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
a `  k )  =  ( a `  j ) )
29 oveq2 5989 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
w ^ k )  =  ( w ^
j ) )
3028, 29oveq12d 5999 . . . . . . . . . . 11  |-  ( k  =  j  ->  (
( a `  k
)  x.  ( w ^ k ) )  =  ( ( a `
 j )  x.  ( w ^ j
) ) )
3130cbvsumv 12377 . . . . . . . . . 10  |-  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( w ^ k
) )  =  sum_ j  e.  ( 0 ... n ) ( ( a `  j
)  x.  ( w ^ j ) )
3227, 31syl6eq 2414 . . . . . . . . 9  |-  ( z  =  w  ->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( z ^ k
) )  =  sum_ j  e.  ( 0 ... n ) ( ( a `  j
)  x.  ( w ^ j ) ) )
3332cbvmptv 4213 . . . . . . . 8  |-  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( z ^ k
) ) )  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j
)  x.  ( w ^ j ) ) )
3424, 33syl6eq 2414 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  (
a  e.  ( CC 
^m  NN0 )  /\  b  e.  ( CC  ^m  NN0 ) ) )  /\  ( n  e.  NN0  /\  m  e.  NN0 )  /\  ( ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j
)  x.  ( w ^ j ) ) ) )
35 simp3rr 1030 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  (
a  e.  ( CC 
^m  NN0 )  /\  b  e.  ( CC  ^m  NN0 ) ) )  /\  ( n  e.  NN0  /\  m  e.  NN0 )  /\  ( ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) )
3625oveq2d 5997 . . . . . . . . . . 11  |-  ( z  =  w  ->  (
( b `  k
)  x.  ( z ^ k ) )  =  ( ( b `
 k )  x.  ( w ^ k
) ) )
3736sumeq2sdv 12385 . . . . . . . . . 10  |-  ( z  =  w  ->  sum_ k  e.  ( 0 ... m
) ( ( b `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( w ^ k ) ) )
38 fveq2 5632 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
b `  k )  =  ( b `  j ) )
3938, 29oveq12d 5999 . . . . . . . . . . 11  |-  ( k  =  j  ->  (
( b `  k
)  x.  ( w ^ k ) )  =  ( ( b `
 j )  x.  ( w ^ j
) ) )
4039cbvsumv 12377 . . . . . . . . . 10  |-  sum_ k  e.  ( 0 ... m
) ( ( b `
 k )  x.  ( w ^ k
) )  =  sum_ j  e.  ( 0 ... m ) ( ( b `  j
)  x.  ( w ^ j ) )
4137, 40syl6eq 2414 . . . . . . . . 9  |-  ( z  =  w  ->  sum_ k  e.  ( 0 ... m
) ( ( b `
 k )  x.  ( z ^ k
) )  =  sum_ j  e.  ( 0 ... m ) ( ( b `  j
)  x.  ( w ^ j ) ) )
4241cbvmptv 4213 . . . . . . . 8  |-  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m
) ( ( b `
 k )  x.  ( z ^ k
) ) )  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... m ) ( ( b `  j
)  x.  ( w ^ j ) ) )
4335, 42syl6eq 2414 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  (
a  e.  ( CC 
^m  NN0 )  /\  b  e.  ( CC  ^m  NN0 ) ) )  /\  ( n  e.  NN0  /\  m  e.  NN0 )  /\  ( ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... m ) ( ( b `  j
)  x.  ( w ^ j ) ) ) )
4417, 18, 19, 20, 21, 22, 23, 34, 43coeeulem 19821 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  (
a  e.  ( CC 
^m  NN0 )  /\  b  e.  ( CC  ^m  NN0 ) ) )  /\  ( n  e.  NN0  /\  m  e.  NN0 )  /\  ( ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) ) )  ->  a  =  b )
45443expia 1154 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  (
a  e.  ( CC 
^m  NN0 )  /\  b  e.  ( CC  ^m  NN0 ) ) )  /\  ( n  e.  NN0  /\  m  e.  NN0 )
)  ->  ( (
( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  (
( b " ( ZZ>=
`  ( m  + 
1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
a  =  b ) )
4645rexlimdvva 2759 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  (
a  e.  ( CC 
^m  NN0 )  /\  b  e.  ( CC  ^m  NN0 ) ) )  -> 
( E. n  e. 
NN0  E. m  e.  NN0  ( ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  ( ( b "
( ZZ>= `  ( m  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
a  =  b ) )
4716, 46syl5bir 209 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  (
a  e.  ( CC 
^m  NN0 )  /\  b  e.  ( CC  ^m  NN0 ) ) )  -> 
( ( E. n  e.  NN0  ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  E. m  e.  NN0  (
( b " ( ZZ>=
`  ( m  + 
1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
a  =  b ) )
4847ralrimivva 2720 . 2  |-  ( F  e.  (Poly `  S
)  ->  A. a  e.  ( CC  ^m  NN0 ) A. b  e.  ( CC  ^m  NN0 )
( ( E. n  e.  NN0  ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  E. m  e.  NN0  (
( b " ( ZZ>=
`  ( m  + 
1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) )  -> 
a  =  b ) )
49 imaeq1 5110 . . . . . . 7  |-  ( a  =  b  ->  (
a " ( ZZ>= `  ( n  +  1
) ) )  =  ( b " ( ZZ>=
`  ( n  + 
1 ) ) ) )
5049eqeq1d 2374 . . . . . 6  |-  ( a  =  b  ->  (
( a " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  <-> 
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 } ) )
51 fveq1 5631 . . . . . . . . . 10  |-  ( a  =  b  ->  (
a `  k )  =  ( b `  k ) )
5251oveq1d 5996 . . . . . . . . 9  |-  ( a  =  b  ->  (
( a `  k
)  x.  ( z ^ k ) )  =  ( ( b `
 k )  x.  ( z ^ k
) ) )
5352sumeq2sdv 12385 . . . . . . . 8  |-  ( a  =  b  ->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) )
5453mpteq2dv 4209 . . . . . . 7  |-  ( a  =  b  ->  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n
) ( ( b `
 k )  x.  ( z ^ k
) ) ) )
5554eqeq2d 2377 . . . . . 6  |-  ( a  =  b  ->  ( F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) )  <->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) )
5650, 55anbi12d 691 . . . . 5  |-  ( a  =  b  ->  (
( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  <->  ( (
b " ( ZZ>= `  ( n  +  1
) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) ) )
5756rexbidv 2649 . . . 4  |-  ( a  =  b  ->  ( E. n  e.  NN0  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  <->  E. n  e.  NN0  ( ( b
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) ) )
58 oveq1 5988 . . . . . . . . 9  |-  ( n  =  m  ->  (
n  +  1 )  =  ( m  + 
1 ) )
5958fveq2d 5636 . . . . . . . 8  |-  ( n  =  m  ->  ( ZZ>=
`  ( n  + 
1 ) )  =  ( ZZ>= `  ( m  +  1 ) ) )
6059imaeq2d 5115 . . . . . . 7  |-  ( n  =  m  ->  (
b " ( ZZ>= `  ( n  +  1
) ) )  =  ( b " ( ZZ>=
`  ( m  + 
1 ) ) ) )
6160eqeq1d 2374 . . . . . 6  |-  ( n  =  m  ->  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  <-> 
( b " ( ZZ>=
`  ( m  + 
1 ) ) )  =  { 0 } ) )
62 oveq2 5989 . . . . . . . . 9  |-  ( n  =  m  ->  (
0 ... n )  =  ( 0 ... m
) )
6362sumeq1d 12382 . . . . . . . 8  |-  ( n  =  m  ->  sum_ k  e.  ( 0 ... n
) ( ( b `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) )
6463mpteq2dv 4209 . . . . . . 7  |-  ( n  =  m  ->  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m
) ( ( b `
 k )  x.  ( z ^ k
) ) ) )
6564eqeq2d 2377 . . . . . 6  |-  ( n  =  m  ->  ( F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k )  x.  (
z ^ k ) ) )  <->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k
)  x.  ( z ^ k ) ) ) ) )
6661, 65anbi12d 691 . . . . 5  |-  ( n  =  m  ->  (
( ( b "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) )  <->  ( (
b " ( ZZ>= `  ( m  +  1
) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) ) )
6766cbvrexv 2850 . . . 4  |-  ( E. n  e.  NN0  (
( b " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( b `  k
)  x.  ( z ^ k ) ) ) )  <->  E. m  e.  NN0  ( ( b
" ( ZZ>= `  (
m  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) )
6857, 67syl6bb 252 . . 3  |-  ( a  =  b  ->  ( E. n  e.  NN0  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  <->  E. m  e.  NN0  ( ( b
" ( ZZ>= `  (
m  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) ) )
6968reu4 3045 . 2  |-  ( E! a  e.  ( CC 
^m  NN0 ) E. n  e.  NN0  ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  <->  ( E. a  e.  ( CC  ^m 
NN0 ) E. n  e.  NN0  ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  /\  A. a  e.  ( CC 
^m  NN0 ) A. b  e.  ( CC  ^m  NN0 ) ( ( E. n  e.  NN0  (
( a " ( ZZ>=
`  ( n  + 
1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  /\  E. m  e.  NN0  ( ( b " ( ZZ>= `  ( m  +  1
) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... m ) ( ( b `  k )  x.  (
z ^ k ) ) ) ) )  ->  a  =  b ) ) )
7015, 48, 69sylanbrc 645 1  |-  ( F  e.  (Poly `  S
)  ->  E! a  e.  ( CC  ^m  NN0 ) E. n  e.  NN0  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715   A.wral 2628   E.wrex 2629   E!wreu 2630    u. cun 3236    C_ wss 3238   {csn 3729    e. cmpt 4179   "cima 4795   ` cfv 5358  (class class class)co 5981    ^m cmap 6915   CCcc 8882   0cc0 8884   1c1 8885    + caddc 8887    x. cmul 8889   NN0cn0 10114   ZZ>=cuz 10381   ...cfz 10935   ^cexp 11269   sum_csu 12366  Polycply 19781
This theorem is referenced by:  coelem  19823  coeeq  19824
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-inf2 7489  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961  ax-pre-sup 8962  ax-addf 8963
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-se 4456  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-isom 5367  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-of 6205  df-1st 6249  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-1o 6621  df-oadd 6625  df-er 6802  df-map 6917  df-pm 6918  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-sup 7341  df-oi 7372  df-card 7719  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-div 9571  df-nn 9894  df-2 9951  df-3 9952  df-n0 10115  df-z 10176  df-uz 10382  df-rp 10506  df-fz 10936  df-fzo 11026  df-fl 11089  df-seq 11211  df-exp 11270  df-hash 11506  df-cj 11791  df-re 11792  df-im 11793  df-sqr 11927  df-abs 11928  df-clim 12169  df-rlim 12170  df-sum 12367  df-0p 19240  df-ply 19785
  Copyright terms: Public domain W3C validator