MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coefv0 Unicode version

Theorem coefv0 20119
Description: The result of evaluating a polynomial at zero is the constant term. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypothesis
Ref Expression
coefv0.1  |-  A  =  (coeff `  F )
Assertion
Ref Expression
coefv0  |-  ( F  e.  (Poly `  S
)  ->  ( F `  0 )  =  ( A `  0
) )

Proof of Theorem coefv0
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 0cn 9040 . . 3  |-  0  e.  CC
2 coefv0.1 . . . 4  |-  A  =  (coeff `  F )
3 eqid 2404 . . . 4  |-  (deg `  F )  =  (deg
`  F )
42, 3coeid2 20111 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  0  e.  CC )  ->  ( F `  0 )  =  sum_ k  e.  ( 0 ... (deg `  F ) ) ( ( A `  k
)  x.  ( 0 ^ k ) ) )
51, 4mpan2 653 . 2  |-  ( F  e.  (Poly `  S
)  ->  ( F `  0 )  = 
sum_ k  e.  ( 0 ... (deg `  F ) ) ( ( A `  k
)  x.  ( 0 ^ k ) ) )
6 dgrcl 20105 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  e.  NN0 )
7 nn0uz 10476 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
86, 7syl6eleq 2494 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  e.  ( ZZ>= ` 
0 ) )
9 fzss2 11048 . . . 4  |-  ( (deg
`  F )  e.  ( ZZ>= `  0 )  ->  ( 0 ... 0
)  C_  ( 0 ... (deg `  F
) ) )
108, 9syl 16 . . 3  |-  ( F  e.  (Poly `  S
)  ->  ( 0 ... 0 )  C_  ( 0 ... (deg `  F ) ) )
11 elfz1eq 11024 . . . . . 6  |-  ( k  e.  ( 0 ... 0 )  ->  k  =  0 )
12 fveq2 5687 . . . . . . 7  |-  ( k  =  0  ->  ( A `  k )  =  ( A ` 
0 ) )
13 oveq2 6048 . . . . . . . 8  |-  ( k  =  0  ->  (
0 ^ k )  =  ( 0 ^ 0 ) )
14 exp0 11341 . . . . . . . . 9  |-  ( 0  e.  CC  ->  (
0 ^ 0 )  =  1 )
151, 14ax-mp 8 . . . . . . . 8  |-  ( 0 ^ 0 )  =  1
1613, 15syl6eq 2452 . . . . . . 7  |-  ( k  =  0  ->  (
0 ^ k )  =  1 )
1712, 16oveq12d 6058 . . . . . 6  |-  ( k  =  0  ->  (
( A `  k
)  x.  ( 0 ^ k ) )  =  ( ( A `
 0 )  x.  1 ) )
1811, 17syl 16 . . . . 5  |-  ( k  e.  ( 0 ... 0 )  ->  (
( A `  k
)  x.  ( 0 ^ k ) )  =  ( ( A `
 0 )  x.  1 ) )
192coef3 20104 . . . . . . 7  |-  ( F  e.  (Poly `  S
)  ->  A : NN0
--> CC )
20 0nn0 10192 . . . . . . 7  |-  0  e.  NN0
21 ffvelrn 5827 . . . . . . 7  |-  ( ( A : NN0 --> CC  /\  0  e.  NN0 )  -> 
( A `  0
)  e.  CC )
2219, 20, 21sylancl 644 . . . . . 6  |-  ( F  e.  (Poly `  S
)  ->  ( A `  0 )  e.  CC )
2322mulid1d 9061 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  ( ( A `  0 )  x.  1 )  =  ( A `  0 ) )
2418, 23sylan9eqr 2458 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  ( 0 ... 0
) )  ->  (
( A `  k
)  x.  ( 0 ^ k ) )  =  ( A ` 
0 ) )
2522adantr 452 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  ( 0 ... 0
) )  ->  ( A `  0 )  e.  CC )
2624, 25eqeltrd 2478 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  ( 0 ... 0
) )  ->  (
( A `  k
)  x.  ( 0 ^ k ) )  e.  CC )
27 eldifn 3430 . . . . . . . 8  |-  ( k  e.  ( ( 0 ... (deg `  F
) )  \  (
0 ... 0 ) )  ->  -.  k  e.  ( 0 ... 0
) )
28 eldifi 3429 . . . . . . . . . . . 12  |-  ( k  e.  ( ( 0 ... (deg `  F
) )  \  (
0 ... 0 ) )  ->  k  e.  ( 0 ... (deg `  F ) ) )
29 elfznn0 11039 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... (deg `  F )
)  ->  k  e.  NN0 )
3028, 29syl 16 . . . . . . . . . . 11  |-  ( k  e.  ( ( 0 ... (deg `  F
) )  \  (
0 ... 0 ) )  ->  k  e.  NN0 )
31 elnn0 10179 . . . . . . . . . . 11  |-  ( k  e.  NN0  <->  ( k  e.  NN  \/  k  =  0 ) )
3230, 31sylib 189 . . . . . . . . . 10  |-  ( k  e.  ( ( 0 ... (deg `  F
) )  \  (
0 ... 0 ) )  ->  ( k  e.  NN  \/  k  =  0 ) )
3332ord 367 . . . . . . . . 9  |-  ( k  e.  ( ( 0 ... (deg `  F
) )  \  (
0 ... 0 ) )  ->  ( -.  k  e.  NN  ->  k  = 
0 ) )
34 id 20 . . . . . . . . . 10  |-  ( k  =  0  ->  k  =  0 )
35 0z 10249 . . . . . . . . . . 11  |-  0  e.  ZZ
36 elfz3 11023 . . . . . . . . . . 11  |-  ( 0  e.  ZZ  ->  0  e.  ( 0 ... 0
) )
3735, 36ax-mp 8 . . . . . . . . . 10  |-  0  e.  ( 0 ... 0
)
3834, 37syl6eqel 2492 . . . . . . . . 9  |-  ( k  =  0  ->  k  e.  ( 0 ... 0
) )
3933, 38syl6 31 . . . . . . . 8  |-  ( k  e.  ( ( 0 ... (deg `  F
) )  \  (
0 ... 0 ) )  ->  ( -.  k  e.  NN  ->  k  e.  ( 0 ... 0
) ) )
4027, 39mt3d 119 . . . . . . 7  |-  ( k  e.  ( ( 0 ... (deg `  F
) )  \  (
0 ... 0 ) )  ->  k  e.  NN )
4140adantl 453 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  ( ( 0 ... (deg `  F )
)  \  ( 0 ... 0 ) ) )  ->  k  e.  NN )
42410expd 11494 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  ( ( 0 ... (deg `  F )
)  \  ( 0 ... 0 ) ) )  ->  ( 0 ^ k )  =  0 )
4342oveq2d 6056 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  ( ( 0 ... (deg `  F )
)  \  ( 0 ... 0 ) ) )  ->  ( ( A `  k )  x.  ( 0 ^ k
) )  =  ( ( A `  k
)  x.  0 ) )
44 ffvelrn 5827 . . . . . 6  |-  ( ( A : NN0 --> CC  /\  k  e.  NN0 )  -> 
( A `  k
)  e.  CC )
4519, 30, 44syl2an 464 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  ( ( 0 ... (deg `  F )
)  \  ( 0 ... 0 ) ) )  ->  ( A `  k )  e.  CC )
4645mul01d 9221 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  ( ( 0 ... (deg `  F )
)  \  ( 0 ... 0 ) ) )  ->  ( ( A `  k )  x.  0 )  =  0 )
4743, 46eqtrd 2436 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  ( ( 0 ... (deg `  F )
)  \  ( 0 ... 0 ) ) )  ->  ( ( A `  k )  x.  ( 0 ^ k
) )  =  0 )
48 fzfid 11267 . . 3  |-  ( F  e.  (Poly `  S
)  ->  ( 0 ... (deg `  F
) )  e.  Fin )
4910, 26, 47, 48fsumss 12474 . 2  |-  ( F  e.  (Poly `  S
)  ->  sum_ k  e.  ( 0 ... 0
) ( ( A `
 k )  x.  ( 0 ^ k
) )  =  sum_ k  e.  ( 0 ... (deg `  F
) ) ( ( A `  k )  x.  ( 0 ^ k ) ) )
5023, 22eqeltrd 2478 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  ( ( A `  0 )  x.  1 )  e.  CC )
5117fsum1 12490 . . . 4  |-  ( ( 0  e.  ZZ  /\  ( ( A ` 
0 )  x.  1 )  e.  CC )  ->  sum_ k  e.  ( 0 ... 0 ) ( ( A `  k )  x.  (
0 ^ k ) )  =  ( ( A `  0 )  x.  1 ) )
5235, 50, 51sylancr 645 . . 3  |-  ( F  e.  (Poly `  S
)  ->  sum_ k  e.  ( 0 ... 0
) ( ( A `
 k )  x.  ( 0 ^ k
) )  =  ( ( A `  0
)  x.  1 ) )
5352, 23eqtrd 2436 . 2  |-  ( F  e.  (Poly `  S
)  ->  sum_ k  e.  ( 0 ... 0
) ( ( A `
 k )  x.  ( 0 ^ k
) )  =  ( A `  0 ) )
545, 49, 533eqtr2d 2442 1  |-  ( F  e.  (Poly `  S
)  ->  ( F `  0 )  =  ( A `  0
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1721    \ cdif 3277    C_ wss 3280   -->wf 5409   ` cfv 5413  (class class class)co 6040   CCcc 8944   0cc0 8946   1c1 8947    x. cmul 8951   NNcn 9956   NN0cn0 10177   ZZcz 10238   ZZ>=cuz 10444   ...cfz 10999   ^cexp 11337   sum_csu 12434  Polycply 20056  coeffccoe 20058  degcdgr 20059
This theorem is referenced by:  coemulc  20126  dgreq0  20136  vieta1lem2  20181  aareccl  20196  ftalem5  20812
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-oi 7435  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-fz 11000  df-fzo 11091  df-fl 11157  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-rlim 12238  df-sum 12435  df-0p 19515  df-ply 20060  df-coe 20062  df-dgr 20063
  Copyright terms: Public domain W3C validator