MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coefv0 Unicode version

Theorem coefv0 19629
Description: The result of evaluating a polynomial at zero is the constant term. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypothesis
Ref Expression
coefv0.1  |-  A  =  (coeff `  F )
Assertion
Ref Expression
coefv0  |-  ( F  e.  (Poly `  S
)  ->  ( F `  0 )  =  ( A `  0
) )

Proof of Theorem coefv0
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 0cn 8831 . . 3  |-  0  e.  CC
2 coefv0.1 . . . 4  |-  A  =  (coeff `  F )
3 eqid 2283 . . . 4  |-  (deg `  F )  =  (deg
`  F )
42, 3coeid2 19621 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  0  e.  CC )  ->  ( F `  0 )  =  sum_ k  e.  ( 0 ... (deg `  F ) ) ( ( A `  k
)  x.  ( 0 ^ k ) ) )
51, 4mpan2 652 . 2  |-  ( F  e.  (Poly `  S
)  ->  ( F `  0 )  = 
sum_ k  e.  ( 0 ... (deg `  F ) ) ( ( A `  k
)  x.  ( 0 ^ k ) ) )
6 dgrcl 19615 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  e.  NN0 )
7 nn0uz 10262 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
86, 7syl6eleq 2373 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  e.  ( ZZ>= ` 
0 ) )
9 fzss2 10831 . . . 4  |-  ( (deg
`  F )  e.  ( ZZ>= `  0 )  ->  ( 0 ... 0
)  C_  ( 0 ... (deg `  F
) ) )
108, 9syl 15 . . 3  |-  ( F  e.  (Poly `  S
)  ->  ( 0 ... 0 )  C_  ( 0 ... (deg `  F ) ) )
11 elfz1eq 10807 . . . . . 6  |-  ( k  e.  ( 0 ... 0 )  ->  k  =  0 )
12 fveq2 5525 . . . . . . 7  |-  ( k  =  0  ->  ( A `  k )  =  ( A ` 
0 ) )
13 oveq2 5866 . . . . . . . 8  |-  ( k  =  0  ->  (
0 ^ k )  =  ( 0 ^ 0 ) )
14 exp0 11108 . . . . . . . . 9  |-  ( 0  e.  CC  ->  (
0 ^ 0 )  =  1 )
151, 14ax-mp 8 . . . . . . . 8  |-  ( 0 ^ 0 )  =  1
1613, 15syl6eq 2331 . . . . . . 7  |-  ( k  =  0  ->  (
0 ^ k )  =  1 )
1712, 16oveq12d 5876 . . . . . 6  |-  ( k  =  0  ->  (
( A `  k
)  x.  ( 0 ^ k ) )  =  ( ( A `
 0 )  x.  1 ) )
1811, 17syl 15 . . . . 5  |-  ( k  e.  ( 0 ... 0 )  ->  (
( A `  k
)  x.  ( 0 ^ k ) )  =  ( ( A `
 0 )  x.  1 ) )
192coef3 19614 . . . . . . 7  |-  ( F  e.  (Poly `  S
)  ->  A : NN0
--> CC )
20 0nn0 9980 . . . . . . 7  |-  0  e.  NN0
21 ffvelrn 5663 . . . . . . 7  |-  ( ( A : NN0 --> CC  /\  0  e.  NN0 )  -> 
( A `  0
)  e.  CC )
2219, 20, 21sylancl 643 . . . . . 6  |-  ( F  e.  (Poly `  S
)  ->  ( A `  0 )  e.  CC )
2322mulid1d 8852 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  ( ( A `  0 )  x.  1 )  =  ( A `  0 ) )
2418, 23sylan9eqr 2337 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  ( 0 ... 0
) )  ->  (
( A `  k
)  x.  ( 0 ^ k ) )  =  ( A ` 
0 ) )
2522adantr 451 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  ( 0 ... 0
) )  ->  ( A `  0 )  e.  CC )
2624, 25eqeltrd 2357 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  ( 0 ... 0
) )  ->  (
( A `  k
)  x.  ( 0 ^ k ) )  e.  CC )
27 eldifn 3299 . . . . . . . 8  |-  ( k  e.  ( ( 0 ... (deg `  F
) )  \  (
0 ... 0 ) )  ->  -.  k  e.  ( 0 ... 0
) )
28 eldifi 3298 . . . . . . . . . . . 12  |-  ( k  e.  ( ( 0 ... (deg `  F
) )  \  (
0 ... 0 ) )  ->  k  e.  ( 0 ... (deg `  F ) ) )
29 elfznn0 10822 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... (deg `  F )
)  ->  k  e.  NN0 )
3028, 29syl 15 . . . . . . . . . . 11  |-  ( k  e.  ( ( 0 ... (deg `  F
) )  \  (
0 ... 0 ) )  ->  k  e.  NN0 )
31 elnn0 9967 . . . . . . . . . . 11  |-  ( k  e.  NN0  <->  ( k  e.  NN  \/  k  =  0 ) )
3230, 31sylib 188 . . . . . . . . . 10  |-  ( k  e.  ( ( 0 ... (deg `  F
) )  \  (
0 ... 0 ) )  ->  ( k  e.  NN  \/  k  =  0 ) )
3332ord 366 . . . . . . . . 9  |-  ( k  e.  ( ( 0 ... (deg `  F
) )  \  (
0 ... 0 ) )  ->  ( -.  k  e.  NN  ->  k  = 
0 ) )
34 id 19 . . . . . . . . . 10  |-  ( k  =  0  ->  k  =  0 )
35 0z 10035 . . . . . . . . . . 11  |-  0  e.  ZZ
36 elfz3 10806 . . . . . . . . . . 11  |-  ( 0  e.  ZZ  ->  0  e.  ( 0 ... 0
) )
3735, 36ax-mp 8 . . . . . . . . . 10  |-  0  e.  ( 0 ... 0
)
3834, 37syl6eqel 2371 . . . . . . . . 9  |-  ( k  =  0  ->  k  e.  ( 0 ... 0
) )
3933, 38syl6 29 . . . . . . . 8  |-  ( k  e.  ( ( 0 ... (deg `  F
) )  \  (
0 ... 0 ) )  ->  ( -.  k  e.  NN  ->  k  e.  ( 0 ... 0
) ) )
4027, 39mt3d 117 . . . . . . 7  |-  ( k  e.  ( ( 0 ... (deg `  F
) )  \  (
0 ... 0 ) )  ->  k  e.  NN )
4140adantl 452 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  ( ( 0 ... (deg `  F )
)  \  ( 0 ... 0 ) ) )  ->  k  e.  NN )
42410expd 11261 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  ( ( 0 ... (deg `  F )
)  \  ( 0 ... 0 ) ) )  ->  ( 0 ^ k )  =  0 )
4342oveq2d 5874 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  ( ( 0 ... (deg `  F )
)  \  ( 0 ... 0 ) ) )  ->  ( ( A `  k )  x.  ( 0 ^ k
) )  =  ( ( A `  k
)  x.  0 ) )
44 ffvelrn 5663 . . . . . 6  |-  ( ( A : NN0 --> CC  /\  k  e.  NN0 )  -> 
( A `  k
)  e.  CC )
4519, 30, 44syl2an 463 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  ( ( 0 ... (deg `  F )
)  \  ( 0 ... 0 ) ) )  ->  ( A `  k )  e.  CC )
4645mul01d 9011 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  ( ( 0 ... (deg `  F )
)  \  ( 0 ... 0 ) ) )  ->  ( ( A `  k )  x.  0 )  =  0 )
4743, 46eqtrd 2315 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  ( ( 0 ... (deg `  F )
)  \  ( 0 ... 0 ) ) )  ->  ( ( A `  k )  x.  ( 0 ^ k
) )  =  0 )
48 fzfid 11035 . . 3  |-  ( F  e.  (Poly `  S
)  ->  ( 0 ... (deg `  F
) )  e.  Fin )
4910, 26, 47, 48fsumss 12198 . 2  |-  ( F  e.  (Poly `  S
)  ->  sum_ k  e.  ( 0 ... 0
) ( ( A `
 k )  x.  ( 0 ^ k
) )  =  sum_ k  e.  ( 0 ... (deg `  F
) ) ( ( A `  k )  x.  ( 0 ^ k ) ) )
5023, 22eqeltrd 2357 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  ( ( A `  0 )  x.  1 )  e.  CC )
5117fsum1 12214 . . . 4  |-  ( ( 0  e.  ZZ  /\  ( ( A ` 
0 )  x.  1 )  e.  CC )  ->  sum_ k  e.  ( 0 ... 0 ) ( ( A `  k )  x.  (
0 ^ k ) )  =  ( ( A `  0 )  x.  1 ) )
5235, 50, 51sylancr 644 . . 3  |-  ( F  e.  (Poly `  S
)  ->  sum_ k  e.  ( 0 ... 0
) ( ( A `
 k )  x.  ( 0 ^ k
) )  =  ( ( A `  0
)  x.  1 ) )
5352, 23eqtrd 2315 . 2  |-  ( F  e.  (Poly `  S
)  ->  sum_ k  e.  ( 0 ... 0
) ( ( A `
 k )  x.  ( 0 ^ k
) )  =  ( A `  0 ) )
545, 49, 533eqtr2d 2321 1  |-  ( F  e.  (Poly `  S
)  ->  ( F `  0 )  =  ( A `  0
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684    \ cdif 3149    C_ wss 3152   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   0cc0 8737   1c1 8738    x. cmul 8742   NNcn 9746   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   ...cfz 10782   ^cexp 11104   sum_csu 12158  Polycply 19566  coeffccoe 19568  degcdgr 19569
This theorem is referenced by:  coemulc  19636  dgreq0  19646  vieta1lem2  19691  aareccl  19706  ftalem5  20314
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-rlim 11963  df-sum 12159  df-0p 19025  df-ply 19570  df-coe 19572  df-dgr 19573
  Copyright terms: Public domain W3C validator