MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeidlem Unicode version

Theorem coeidlem 19619
Description: Lemma for coeid 19620. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
dgrub.1  |-  A  =  (coeff `  F )
dgrub.2  |-  N  =  (deg `  F )
coeid.3  |-  ( ph  ->  F  e.  (Poly `  S ) )
coeid.4  |-  ( ph  ->  M  e.  NN0 )
coeid.5  |-  ( ph  ->  B  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
coeid.6  |-  ( ph  ->  ( B " ( ZZ>=
`  ( M  + 
1 ) ) )  =  { 0 } )
coeid.7  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... M
) ( ( B `
 k )  x.  ( z ^ k
) ) ) )
Assertion
Ref Expression
coeidlem  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
Distinct variable groups:    z, k, A    k, F    ph, k, z    S, k, z    B, k, z    k, M, z   
k, N, z
Allowed substitution hint:    F( z)

Proof of Theorem coeidlem
StepHypRef Expression
1 coeid.7 . 2  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... M
) ( ( B `
 k )  x.  ( z ^ k
) ) ) )
2 dgrub.1 . . . . . . 7  |-  A  =  (coeff `  F )
3 coeid.3 . . . . . . . 8  |-  ( ph  ->  F  e.  (Poly `  S ) )
4 coeid.4 . . . . . . . 8  |-  ( ph  ->  M  e.  NN0 )
5 coeid.5 . . . . . . . . . 10  |-  ( ph  ->  B  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
6 plybss 19576 . . . . . . . . . . . . . 14  |-  ( F  e.  (Poly `  S
)  ->  S  C_  CC )
73, 6syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  S  C_  CC )
8 0cn 8831 . . . . . . . . . . . . . . 15  |-  0  e.  CC
98a1i 10 . . . . . . . . . . . . . 14  |-  ( ph  ->  0  e.  CC )
109snssd 3760 . . . . . . . . . . . . 13  |-  ( ph  ->  { 0 }  C_  CC )
117, 10unssd 3351 . . . . . . . . . . . 12  |-  ( ph  ->  ( S  u.  {
0 } )  C_  CC )
12 cnex 8818 . . . . . . . . . . . 12  |-  CC  e.  _V
13 ssexg 4160 . . . . . . . . . . . 12  |-  ( ( ( S  u.  {
0 } )  C_  CC  /\  CC  e.  _V )  ->  ( S  u.  { 0 } )  e. 
_V )
1411, 12, 13sylancl 643 . . . . . . . . . . 11  |-  ( ph  ->  ( S  u.  {
0 } )  e. 
_V )
15 nn0ex 9971 . . . . . . . . . . 11  |-  NN0  e.  _V
16 elmapg 6785 . . . . . . . . . . 11  |-  ( ( ( S  u.  {
0 } )  e. 
_V  /\  NN0  e.  _V )  ->  ( B  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  <->  B : NN0 --> ( S  u.  { 0 } ) ) )
1714, 15, 16sylancl 643 . . . . . . . . . 10  |-  ( ph  ->  ( B  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  <->  B : NN0 --> ( S  u.  { 0 } ) ) )
185, 17mpbid 201 . . . . . . . . 9  |-  ( ph  ->  B : NN0 --> ( S  u.  { 0 } ) )
19 fss 5397 . . . . . . . . 9  |-  ( ( B : NN0 --> ( S  u.  { 0 } )  /\  ( S  u.  { 0 } )  C_  CC )  ->  B : NN0 --> CC )
2018, 11, 19syl2anc 642 . . . . . . . 8  |-  ( ph  ->  B : NN0 --> CC )
21 coeid.6 . . . . . . . 8  |-  ( ph  ->  ( B " ( ZZ>=
`  ( M  + 
1 ) ) )  =  { 0 } )
223, 4, 20, 21, 1coeeq 19609 . . . . . . 7  |-  ( ph  ->  (coeff `  F )  =  B )
232, 22syl5req 2328 . . . . . 6  |-  ( ph  ->  B  =  A )
2423adantr 451 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  B  =  A )
25 fveq1 5524 . . . . . . 7  |-  ( B  =  A  ->  ( B `  k )  =  ( A `  k ) )
2625oveq1d 5873 . . . . . 6  |-  ( B  =  A  ->  (
( B `  k
)  x.  ( z ^ k ) )  =  ( ( A `
 k )  x.  ( z ^ k
) ) )
2726sumeq2sdv 12177 . . . . 5  |-  ( B  =  A  ->  sum_ k  e.  ( 0 ... M
) ( ( B `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... M ) ( ( A `  k
)  x.  ( z ^ k ) ) )
2824, 27syl 15 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... M
) ( ( B `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... M ) ( ( A `  k
)  x.  ( z ^ k ) ) )
293adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  CC )  ->  F  e.  (Poly `  S )
)
30 dgrub.2 . . . . . . . . . 10  |-  N  =  (deg `  F )
31 dgrcl 19615 . . . . . . . . . 10  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  e.  NN0 )
3230, 31syl5eqel 2367 . . . . . . . . 9  |-  ( F  e.  (Poly `  S
)  ->  N  e.  NN0 )
3329, 32syl 15 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  N  e. 
NN0 )
3433nn0zd 10115 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  N  e.  ZZ )
354adantr 451 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  M  e. 
NN0 )
3635nn0zd 10115 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  M  e.  ZZ )
3724imaeq1d 5011 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  CC )  ->  ( B
" ( ZZ>= `  ( M  +  1 ) ) )  =  ( A " ( ZZ>= `  ( M  +  1
) ) ) )
3821adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  CC )  ->  ( B
" ( ZZ>= `  ( M  +  1 ) ) )  =  {
0 } )
3937, 38eqtr3d 2317 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  ( A
" ( ZZ>= `  ( M  +  1 ) ) )  =  {
0 } )
402, 30dgrlb 19618 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A
" ( ZZ>= `  ( M  +  1 ) ) )  =  {
0 } )  ->  N  <_  M )
4129, 35, 39, 40syl3anc 1182 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  N  <_  M )
42 eluz2 10236 . . . . . . 7  |-  ( M  e.  ( ZZ>= `  N
)  <->  ( N  e.  ZZ  /\  M  e.  ZZ  /\  N  <_  M ) )
4334, 36, 41, 42syl3anbrc 1136 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  M  e.  ( ZZ>= `  N )
)
44 fzss2 10831 . . . . . 6  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( 0 ... N )  C_  ( 0 ... M
) )
4543, 44syl 15 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... N )  C_  ( 0 ... M
) )
46 elfznn0 10822 . . . . . 6  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
47 plyssc 19582 . . . . . . . . . . 11  |-  (Poly `  S )  C_  (Poly `  CC )
4847, 3sseldi 3178 . . . . . . . . . 10  |-  ( ph  ->  F  e.  (Poly `  CC ) )
492coef3 19614 . . . . . . . . . 10  |-  ( F  e.  (Poly `  CC )  ->  A : NN0 --> CC )
5048, 49syl 15 . . . . . . . . 9  |-  ( ph  ->  A : NN0 --> CC )
5150adantr 451 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  A : NN0
--> CC )
52 ffvelrn 5663 . . . . . . . 8  |-  ( ( A : NN0 --> CC  /\  k  e.  NN0 )  -> 
( A `  k
)  e.  CC )
5351, 52sylan 457 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  ( A `  k )  e.  CC )
54 expcl 11121 . . . . . . . 8  |-  ( ( z  e.  CC  /\  k  e.  NN0 )  -> 
( z ^ k
)  e.  CC )
5554adantll 694 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
z ^ k )  e.  CC )
5653, 55mulcld 8855 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
( A `  k
)  x.  ( z ^ k ) )  e.  CC )
5746, 56sylan2 460 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( A `  k
)  x.  ( z ^ k ) )  e.  CC )
58 eldifn 3299 . . . . . . . . 9  |-  ( k  e.  ( ( 0 ... M )  \ 
( 0 ... N
) )  ->  -.  k  e.  ( 0 ... N ) )
5958adantl 452 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... M )  \  (
0 ... N ) ) )  ->  -.  k  e.  ( 0 ... N
) )
60 eldifi 3298 . . . . . . . . . . . 12  |-  ( k  e.  ( ( 0 ... M )  \ 
( 0 ... N
) )  ->  k  e.  ( 0 ... M
) )
61 elfznn0 10822 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... M )  ->  k  e.  NN0 )
6260, 61syl 15 . . . . . . . . . . 11  |-  ( k  e.  ( ( 0 ... M )  \ 
( 0 ... N
) )  ->  k  e.  NN0 )
632, 30dgrub 19616 . . . . . . . . . . . 12  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  NN0  /\  ( A `
 k )  =/=  0 )  ->  k  <_  N )
64633expia 1153 . . . . . . . . . . 11  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  NN0 )  ->  (
( A `  k
)  =/=  0  -> 
k  <_  N )
)
6529, 62, 64syl2an 463 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... M )  \  (
0 ... N ) ) )  ->  ( ( A `  k )  =/=  0  ->  k  <_  N ) )
66 elfzuz 10794 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... M )  ->  k  e.  ( ZZ>= `  0 )
)
6760, 66syl 15 . . . . . . . . . . 11  |-  ( k  e.  ( ( 0 ... M )  \ 
( 0 ... N
) )  ->  k  e.  ( ZZ>= `  0 )
)
68 elfz5 10790 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= ` 
0 )  /\  N  e.  ZZ )  ->  (
k  e.  ( 0 ... N )  <->  k  <_  N ) )
6967, 34, 68syl2anr 464 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... M )  \  (
0 ... N ) ) )  ->  ( k  e.  ( 0 ... N
)  <->  k  <_  N
) )
7065, 69sylibrd 225 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... M )  \  (
0 ... N ) ) )  ->  ( ( A `  k )  =/=  0  ->  k  e.  ( 0 ... N
) ) )
7170necon1bd 2514 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... M )  \  (
0 ... N ) ) )  ->  ( -.  k  e.  ( 0 ... N )  -> 
( A `  k
)  =  0 ) )
7259, 71mpd 14 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... M )  \  (
0 ... N ) ) )  ->  ( A `  k )  =  0 )
7372oveq1d 5873 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... M )  \  (
0 ... N ) ) )  ->  ( ( A `  k )  x.  ( z ^ k
) )  =  ( 0  x.  ( z ^ k ) ) )
74 simpr 447 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  z  e.  CC )
7574, 62, 54syl2an 463 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... M )  \  (
0 ... N ) ) )  ->  ( z ^ k )  e.  CC )
7675mul02d 9010 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... M )  \  (
0 ... N ) ) )  ->  ( 0  x.  ( z ^
k ) )  =  0 )
7773, 76eqtrd 2315 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... M )  \  (
0 ... N ) ) )  ->  ( ( A `  k )  x.  ( z ^ k
) )  =  0 )
78 fzfid 11035 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... M )  e. 
Fin )
7945, 57, 77, 78fsumss 12198 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... M ) ( ( A `  k
)  x.  ( z ^ k ) ) )
8028, 79eqtr4d 2318 . . 3  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... M
) ( ( B `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) )
8180mpteq2dva 4106 . 2  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... M ) ( ( B `  k
)  x.  ( z ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
821, 81eqtrd 2315 1  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   _Vcvv 2788    \ cdif 3149    u. cun 3150    C_ wss 3152   {csn 3640   class class class wbr 4023    e. cmpt 4077   "cima 4692   -->wf 5251   ` cfv 5255  (class class class)co 5858    ^m cmap 6772   CCcc 8735   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    <_ cle 8868   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   ...cfz 10782   ^cexp 11104   sum_csu 12158  Polycply 19566  coeffccoe 19568  degcdgr 19569
This theorem is referenced by:  coeid  19620
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-rlim 11963  df-sum 12159  df-0p 19025  df-ply 19570  df-coe 19572  df-dgr 19573
  Copyright terms: Public domain W3C validator