MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coemulhi Structured version   Unicode version

Theorem coemulhi 20164
Description: The leading coefficient of a product of polynomials. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
coefv0.1  |-  A  =  (coeff `  F )
coeadd.2  |-  B  =  (coeff `  G )
coemulhi.3  |-  M  =  (deg `  F )
coemulhi.4  |-  N  =  (deg `  G )
Assertion
Ref Expression
coemulhi  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( (coeff `  ( F  o F  x.  G ) ) `
 ( M  +  N ) )  =  ( ( A `  M )  x.  ( B `  N )
) )

Proof of Theorem coemulhi
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 coemulhi.3 . . . . 5  |-  M  =  (deg `  F )
2 dgrcl 20144 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  e.  NN0 )
31, 2syl5eqel 2519 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  M  e.  NN0 )
4 coemulhi.4 . . . . 5  |-  N  =  (deg `  G )
5 dgrcl 20144 . . . . 5  |-  ( G  e.  (Poly `  S
)  ->  (deg `  G
)  e.  NN0 )
64, 5syl5eqel 2519 . . . 4  |-  ( G  e.  (Poly `  S
)  ->  N  e.  NN0 )
7 nn0addcl 10247 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  NN0 )
83, 6, 7syl2an 464 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( M  +  N )  e.  NN0 )
9 coefv0.1 . . . 4  |-  A  =  (coeff `  F )
10 coeadd.2 . . . 4  |-  B  =  (coeff `  G )
119, 10coemul 20162 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  ( M  +  N
)  e.  NN0 )  ->  ( (coeff `  ( F  o F  x.  G
) ) `  ( M  +  N )
)  =  sum_ k  e.  ( 0 ... ( M  +  N )
) ( ( A `
 k )  x.  ( B `  (
( M  +  N
)  -  k ) ) ) )
128, 11mpd3an3 1280 . 2  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( (coeff `  ( F  o F  x.  G ) ) `
 ( M  +  N ) )  = 
sum_ k  e.  ( 0 ... ( M  +  N ) ) ( ( A `  k )  x.  ( B `  ( ( M  +  N )  -  k ) ) ) )
136adantl 453 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  N  e.  NN0 )
1413nn0ge0d 10269 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  0  <_  N )
153adantr 452 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  M  e.  NN0 )
1615nn0red 10267 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  M  e.  RR )
1713nn0red 10267 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  N  e.  RR )
1816, 17addge01d 9606 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( 0  <_  N  <->  M  <_  ( M  +  N ) ) )
1914, 18mpbid 202 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  M  <_  ( M  +  N ) )
20 nn0uz 10512 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
2115, 20syl6eleq 2525 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  M  e.  ( ZZ>= `  0 )
)
228nn0zd 10365 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( M  +  N )  e.  ZZ )
23 elfz5 11043 . . . . . 6  |-  ( ( M  e.  ( ZZ>= ` 
0 )  /\  ( M  +  N )  e.  ZZ )  ->  ( M  e.  ( 0 ... ( M  +  N ) )  <->  M  <_  ( M  +  N ) ) )
2421, 22, 23syl2anc 643 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( M  e.  ( 0 ... ( M  +  N )
)  <->  M  <_  ( M  +  N ) ) )
2519, 24mpbird 224 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  M  e.  ( 0 ... ( M  +  N )
) )
2625snssd 3935 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  { M }  C_  ( 0 ... ( M  +  N
) ) )
27 elsni 3830 . . . . . 6  |-  ( k  e.  { M }  ->  k  =  M )
2827adantl 453 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  { M } )  -> 
k  =  M )
29 fveq2 5720 . . . . . 6  |-  ( k  =  M  ->  ( A `  k )  =  ( A `  M ) )
30 oveq2 6081 . . . . . . 7  |-  ( k  =  M  ->  (
( M  +  N
)  -  k )  =  ( ( M  +  N )  -  M ) )
3130fveq2d 5724 . . . . . 6  |-  ( k  =  M  ->  ( B `  ( ( M  +  N )  -  k ) )  =  ( B `  ( ( M  +  N )  -  M
) ) )
3229, 31oveq12d 6091 . . . . 5  |-  ( k  =  M  ->  (
( A `  k
)  x.  ( B `
 ( ( M  +  N )  -  k ) ) )  =  ( ( A `
 M )  x.  ( B `  (
( M  +  N
)  -  M ) ) ) )
3328, 32syl 16 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  { M } )  -> 
( ( A `  k )  x.  ( B `  ( ( M  +  N )  -  k ) ) )  =  ( ( A `  M )  x.  ( B `  ( ( M  +  N )  -  M
) ) ) )
3416recnd 9106 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  M  e.  CC )
3517recnd 9106 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  N  e.  CC )
3634, 35pncan2d 9405 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( ( M  +  N )  -  M )  =  N )
3736fveq2d 5724 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( B `  ( ( M  +  N )  -  M
) )  =  ( B `  N ) )
3837oveq2d 6089 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( ( A `  M )  x.  ( B `  (
( M  +  N
)  -  M ) ) )  =  ( ( A `  M
)  x.  ( B `
 N ) ) )
399coef3 20143 . . . . . . . . 9  |-  ( F  e.  (Poly `  S
)  ->  A : NN0
--> CC )
4039adantr 452 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  A : NN0
--> CC )
4140, 15ffvelrnd 5863 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( A `  M )  e.  CC )
4210coef3 20143 . . . . . . . . 9  |-  ( G  e.  (Poly `  S
)  ->  B : NN0
--> CC )
4342adantl 453 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  B : NN0
--> CC )
4443, 13ffvelrnd 5863 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( B `  N )  e.  CC )
4541, 44mulcld 9100 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( ( A `  M )  x.  ( B `  N
) )  e.  CC )
4638, 45eqeltrd 2509 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( ( A `  M )  x.  ( B `  (
( M  +  N
)  -  M ) ) )  e.  CC )
4746adantr 452 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  { M } )  -> 
( ( A `  M )  x.  ( B `  ( ( M  +  N )  -  M ) ) )  e.  CC )
4833, 47eqeltrd 2509 . . 3  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  { M } )  -> 
( ( A `  k )  x.  ( B `  ( ( M  +  N )  -  k ) ) )  e.  CC )
49 simpl 444 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  F  e.  (Poly `  S ) )
50 eldifi 3461 . . . . . . . . . 10  |-  ( k  e.  ( ( 0 ... ( M  +  N ) )  \  { M } )  -> 
k  e.  ( 0 ... ( M  +  N ) ) )
51 elfznn0 11075 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... ( M  +  N
) )  ->  k  e.  NN0 )
5250, 51syl 16 . . . . . . . . 9  |-  ( k  e.  ( ( 0 ... ( M  +  N ) )  \  { M } )  -> 
k  e.  NN0 )
539, 1dgrub 20145 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  NN0  /\  ( A `
 k )  =/=  0 )  ->  k  <_  M )
54533expia 1155 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  NN0 )  ->  (
( A `  k
)  =/=  0  -> 
k  <_  M )
)
5549, 52, 54syl2an 464 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( ( A `  k )  =/=  0  ->  k  <_  M )
)
5655necon1bd 2666 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( -.  k  <_  M  ->  ( A `  k )  =  0 ) )
5756imp 419 . . . . . 6  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  k  <_  M )  ->  ( A `  k )  =  0 )
5857oveq1d 6088 . . . . 5  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  k  <_  M )  ->  (
( A `  k
)  x.  ( B `
 ( ( M  +  N )  -  k ) ) )  =  ( 0  x.  ( B `  (
( M  +  N
)  -  k ) ) ) )
5943ad2antrr 707 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  k  <_  M )  ->  B : NN0 --> CC )
6050ad2antlr 708 . . . . . . . 8  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  k  <_  M )  ->  k  e.  ( 0 ... ( M  +  N )
) )
61 fznn0sub 11077 . . . . . . . 8  |-  ( k  e.  ( 0 ... ( M  +  N
) )  ->  (
( M  +  N
)  -  k )  e.  NN0 )
6260, 61syl 16 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  k  <_  M )  ->  (
( M  +  N
)  -  k )  e.  NN0 )
6359, 62ffvelrnd 5863 . . . . . 6  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  k  <_  M )  ->  ( B `  ( ( M  +  N )  -  k ) )  e.  CC )
6463mul02d 9256 . . . . 5  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  k  <_  M )  ->  (
0  x.  ( B `
 ( ( M  +  N )  -  k ) ) )  =  0 )
6558, 64eqtrd 2467 . . . 4  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  k  <_  M )  ->  (
( A `  k
)  x.  ( B `
 ( ( M  +  N )  -  k ) ) )  =  0 )
6616adantr 452 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  ->  M  e.  RR )
6750adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
k  e.  ( 0 ... ( M  +  N ) ) )
6867, 51syl 16 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
k  e.  NN0 )
6968nn0red 10267 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
k  e.  RR )
7017adantr 452 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  ->  N  e.  RR )
7166, 69, 70leadd1d 9612 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( M  <_  k  <->  ( M  +  N )  <_  ( k  +  N ) ) )
728adantr 452 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( M  +  N
)  e.  NN0 )
7372nn0red 10267 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( M  +  N
)  e.  RR )
7473, 69, 70lesubadd2d 9617 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( ( ( M  +  N )  -  k )  <_  N  <->  ( M  +  N )  <_  ( k  +  N ) ) )
7571, 74bitr4d 248 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( M  <_  k  <->  ( ( M  +  N
)  -  k )  <_  N ) )
7675notbid 286 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( -.  M  <_ 
k  <->  -.  ( ( M  +  N )  -  k )  <_  N ) )
7776biimpa 471 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  M  <_ 
k )  ->  -.  ( ( M  +  N )  -  k
)  <_  N )
78 simpr 448 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  G  e.  (Poly `  S ) )
7950, 61syl 16 . . . . . . . . . 10  |-  ( k  e.  ( ( 0 ... ( M  +  N ) )  \  { M } )  -> 
( ( M  +  N )  -  k
)  e.  NN0 )
8010, 4dgrub 20145 . . . . . . . . . . 11  |-  ( ( G  e.  (Poly `  S )  /\  (
( M  +  N
)  -  k )  e.  NN0  /\  ( B `  ( ( M  +  N )  -  k ) )  =/=  0 )  -> 
( ( M  +  N )  -  k
)  <_  N )
81803expia 1155 . . . . . . . . . 10  |-  ( ( G  e.  (Poly `  S )  /\  (
( M  +  N
)  -  k )  e.  NN0 )  -> 
( ( B `  ( ( M  +  N )  -  k
) )  =/=  0  ->  ( ( M  +  N )  -  k
)  <_  N )
)
8278, 79, 81syl2an 464 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( ( B `  ( ( M  +  N )  -  k
) )  =/=  0  ->  ( ( M  +  N )  -  k
)  <_  N )
)
8382necon1bd 2666 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( -.  ( ( M  +  N )  -  k )  <_  N  ->  ( B `  ( ( M  +  N )  -  k
) )  =  0 ) )
8483imp 419 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  ( ( M  +  N )  -  k )  <_  N )  ->  ( B `  ( ( M  +  N )  -  k ) )  =  0 )
8577, 84syldan 457 . . . . . 6  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  M  <_ 
k )  ->  ( B `  ( ( M  +  N )  -  k ) )  =  0 )
8685oveq2d 6089 . . . . 5  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  M  <_ 
k )  ->  (
( A `  k
)  x.  ( B `
 ( ( M  +  N )  -  k ) ) )  =  ( ( A `
 k )  x.  0 ) )
8740ad2antrr 707 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  M  <_ 
k )  ->  A : NN0 --> CC )
8852ad2antlr 708 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  M  <_ 
k )  ->  k  e.  NN0 )
8987, 88ffvelrnd 5863 . . . . . 6  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  M  <_ 
k )  ->  ( A `  k )  e.  CC )
9089mul01d 9257 . . . . 5  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  M  <_ 
k )  ->  (
( A `  k
)  x.  0 )  =  0 )
9186, 90eqtrd 2467 . . . 4  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  M  <_ 
k )  ->  (
( A `  k
)  x.  ( B `
 ( ( M  +  N )  -  k ) ) )  =  0 )
92 eldifsni 3920 . . . . . . 7  |-  ( k  e.  ( ( 0 ... ( M  +  N ) )  \  { M } )  -> 
k  =/=  M )
9392adantl 453 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
k  =/=  M )
9469, 66letri3d 9207 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( k  =  M  <-> 
( k  <_  M  /\  M  <_  k ) ) )
9594necon3abid 2631 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( k  =/=  M  <->  -.  ( k  <_  M  /\  M  <_  k ) ) )
9693, 95mpbid 202 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  ->  -.  ( k  <_  M  /\  M  <_  k ) )
97 ianor 475 . . . . 5  |-  ( -.  ( k  <_  M  /\  M  <_  k )  <-> 
( -.  k  <_  M  \/  -.  M  <_  k ) )
9896, 97sylib 189 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( -.  k  <_  M  \/  -.  M  <_  k ) )
9965, 91, 98mpjaodan 762 . . 3  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( ( A `  k )  x.  ( B `  ( ( M  +  N )  -  k ) ) )  =  0 )
100 fzfid 11304 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( 0 ... ( M  +  N ) )  e. 
Fin )
10126, 48, 99, 100fsumss 12511 . 2  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  sum_ k  e. 
{ M }  (
( A `  k
)  x.  ( B `
 ( ( M  +  N )  -  k ) ) )  =  sum_ k  e.  ( 0 ... ( M  +  N ) ) ( ( A `  k )  x.  ( B `  ( ( M  +  N )  -  k ) ) ) )
10232sumsn 12526 . . . 4  |-  ( ( M  e.  NN0  /\  ( ( A `  M )  x.  ( B `  ( ( M  +  N )  -  M ) ) )  e.  CC )  ->  sum_ k  e.  { M }  ( ( A `
 k )  x.  ( B `  (
( M  +  N
)  -  k ) ) )  =  ( ( A `  M
)  x.  ( B `
 ( ( M  +  N )  -  M ) ) ) )
10315, 46, 102syl2anc 643 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  sum_ k  e. 
{ M }  (
( A `  k
)  x.  ( B `
 ( ( M  +  N )  -  k ) ) )  =  ( ( A `
 M )  x.  ( B `  (
( M  +  N
)  -  M ) ) ) )
104103, 38eqtrd 2467 . 2  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  sum_ k  e. 
{ M }  (
( A `  k
)  x.  ( B `
 ( ( M  +  N )  -  k ) ) )  =  ( ( A `
 M )  x.  ( B `  N
) ) )
10512, 101, 1043eqtr2d 2473 1  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( (coeff `  ( F  o F  x.  G ) ) `
 ( M  +  N ) )  =  ( ( A `  M )  x.  ( B `  N )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598    \ cdif 3309   {csn 3806   class class class wbr 4204   -->wf 5442   ` cfv 5446  (class class class)co 6073    o Fcof 6295   CCcc 8980   RRcr 8981   0cc0 8982    + caddc 8985    x. cmul 8987    <_ cle 9113    - cmin 9283   NN0cn0 10213   ZZcz 10274   ZZ>=cuz 10480   ...cfz 11035   sum_csu 12471  Polycply 20095  coeffccoe 20097  degcdgr 20098
This theorem is referenced by:  dgrmul  20180  plymul0or  20190  plydivlem4  20205  vieta1lem2  20220
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-map 7012  df-pm 7013  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7471  df-card 7818  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-fz 11036  df-fzo 11128  df-fl 11194  df-seq 11316  df-exp 11375  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-clim 12274  df-rlim 12275  df-sum 12472  df-0p 19554  df-ply 20099  df-coe 20101  df-dgr 20102
  Copyright terms: Public domain W3C validator