MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coemulhi Unicode version

Theorem coemulhi 20039
Description: The leading coefficient of a product of polynomials. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
coefv0.1  |-  A  =  (coeff `  F )
coeadd.2  |-  B  =  (coeff `  G )
coemulhi.3  |-  M  =  (deg `  F )
coemulhi.4  |-  N  =  (deg `  G )
Assertion
Ref Expression
coemulhi  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( (coeff `  ( F  o F  x.  G ) ) `
 ( M  +  N ) )  =  ( ( A `  M )  x.  ( B `  N )
) )

Proof of Theorem coemulhi
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 coemulhi.3 . . . . 5  |-  M  =  (deg `  F )
2 dgrcl 20019 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  e.  NN0 )
31, 2syl5eqel 2471 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  M  e.  NN0 )
4 coemulhi.4 . . . . 5  |-  N  =  (deg `  G )
5 dgrcl 20019 . . . . 5  |-  ( G  e.  (Poly `  S
)  ->  (deg `  G
)  e.  NN0 )
64, 5syl5eqel 2471 . . . 4  |-  ( G  e.  (Poly `  S
)  ->  N  e.  NN0 )
7 nn0addcl 10187 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  NN0 )
83, 6, 7syl2an 464 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( M  +  N )  e.  NN0 )
9 coefv0.1 . . . 4  |-  A  =  (coeff `  F )
10 coeadd.2 . . . 4  |-  B  =  (coeff `  G )
119, 10coemul 20037 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  ( M  +  N
)  e.  NN0 )  ->  ( (coeff `  ( F  o F  x.  G
) ) `  ( M  +  N )
)  =  sum_ k  e.  ( 0 ... ( M  +  N )
) ( ( A `
 k )  x.  ( B `  (
( M  +  N
)  -  k ) ) ) )
128, 11mpd3an3 1280 . 2  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( (coeff `  ( F  o F  x.  G ) ) `
 ( M  +  N ) )  = 
sum_ k  e.  ( 0 ... ( M  +  N ) ) ( ( A `  k )  x.  ( B `  ( ( M  +  N )  -  k ) ) ) )
136adantl 453 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  N  e.  NN0 )
1413nn0ge0d 10209 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  0  <_  N )
153adantr 452 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  M  e.  NN0 )
1615nn0red 10207 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  M  e.  RR )
1713nn0red 10207 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  N  e.  RR )
1816, 17addge01d 9546 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( 0  <_  N  <->  M  <_  ( M  +  N ) ) )
1914, 18mpbid 202 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  M  <_  ( M  +  N ) )
20 nn0uz 10452 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
2115, 20syl6eleq 2477 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  M  e.  ( ZZ>= `  0 )
)
228nn0zd 10305 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( M  +  N )  e.  ZZ )
23 elfz5 10983 . . . . . 6  |-  ( ( M  e.  ( ZZ>= ` 
0 )  /\  ( M  +  N )  e.  ZZ )  ->  ( M  e.  ( 0 ... ( M  +  N ) )  <->  M  <_  ( M  +  N ) ) )
2421, 22, 23syl2anc 643 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( M  e.  ( 0 ... ( M  +  N )
)  <->  M  <_  ( M  +  N ) ) )
2519, 24mpbird 224 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  M  e.  ( 0 ... ( M  +  N )
) )
2625snssd 3886 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  { M }  C_  ( 0 ... ( M  +  N
) ) )
27 elsni 3781 . . . . . 6  |-  ( k  e.  { M }  ->  k  =  M )
2827adantl 453 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  { M } )  -> 
k  =  M )
29 fveq2 5668 . . . . . 6  |-  ( k  =  M  ->  ( A `  k )  =  ( A `  M ) )
30 oveq2 6028 . . . . . . 7  |-  ( k  =  M  ->  (
( M  +  N
)  -  k )  =  ( ( M  +  N )  -  M ) )
3130fveq2d 5672 . . . . . 6  |-  ( k  =  M  ->  ( B `  ( ( M  +  N )  -  k ) )  =  ( B `  ( ( M  +  N )  -  M
) ) )
3229, 31oveq12d 6038 . . . . 5  |-  ( k  =  M  ->  (
( A `  k
)  x.  ( B `
 ( ( M  +  N )  -  k ) ) )  =  ( ( A `
 M )  x.  ( B `  (
( M  +  N
)  -  M ) ) ) )
3328, 32syl 16 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  { M } )  -> 
( ( A `  k )  x.  ( B `  ( ( M  +  N )  -  k ) ) )  =  ( ( A `  M )  x.  ( B `  ( ( M  +  N )  -  M
) ) ) )
3416recnd 9047 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  M  e.  CC )
3517recnd 9047 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  N  e.  CC )
3634, 35pncan2d 9345 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( ( M  +  N )  -  M )  =  N )
3736fveq2d 5672 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( B `  ( ( M  +  N )  -  M
) )  =  ( B `  N ) )
3837oveq2d 6036 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( ( A `  M )  x.  ( B `  (
( M  +  N
)  -  M ) ) )  =  ( ( A `  M
)  x.  ( B `
 N ) ) )
399coef3 20018 . . . . . . . . 9  |-  ( F  e.  (Poly `  S
)  ->  A : NN0
--> CC )
4039adantr 452 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  A : NN0
--> CC )
4140, 15ffvelrnd 5810 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( A `  M )  e.  CC )
4210coef3 20018 . . . . . . . . 9  |-  ( G  e.  (Poly `  S
)  ->  B : NN0
--> CC )
4342adantl 453 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  B : NN0
--> CC )
4443, 13ffvelrnd 5810 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( B `  N )  e.  CC )
4541, 44mulcld 9041 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( ( A `  M )  x.  ( B `  N
) )  e.  CC )
4638, 45eqeltrd 2461 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( ( A `  M )  x.  ( B `  (
( M  +  N
)  -  M ) ) )  e.  CC )
4746adantr 452 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  { M } )  -> 
( ( A `  M )  x.  ( B `  ( ( M  +  N )  -  M ) ) )  e.  CC )
4833, 47eqeltrd 2461 . . 3  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  { M } )  -> 
( ( A `  k )  x.  ( B `  ( ( M  +  N )  -  k ) ) )  e.  CC )
49 simpl 444 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  F  e.  (Poly `  S ) )
50 eldifi 3412 . . . . . . . . . 10  |-  ( k  e.  ( ( 0 ... ( M  +  N ) )  \  { M } )  -> 
k  e.  ( 0 ... ( M  +  N ) ) )
51 elfznn0 11015 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... ( M  +  N
) )  ->  k  e.  NN0 )
5250, 51syl 16 . . . . . . . . 9  |-  ( k  e.  ( ( 0 ... ( M  +  N ) )  \  { M } )  -> 
k  e.  NN0 )
539, 1dgrub 20020 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  NN0  /\  ( A `
 k )  =/=  0 )  ->  k  <_  M )
54533expia 1155 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  k  e.  NN0 )  ->  (
( A `  k
)  =/=  0  -> 
k  <_  M )
)
5549, 52, 54syl2an 464 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( ( A `  k )  =/=  0  ->  k  <_  M )
)
5655necon1bd 2618 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( -.  k  <_  M  ->  ( A `  k )  =  0 ) )
5756imp 419 . . . . . 6  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  k  <_  M )  ->  ( A `  k )  =  0 )
5857oveq1d 6035 . . . . 5  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  k  <_  M )  ->  (
( A `  k
)  x.  ( B `
 ( ( M  +  N )  -  k ) ) )  =  ( 0  x.  ( B `  (
( M  +  N
)  -  k ) ) ) )
5943ad2antrr 707 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  k  <_  M )  ->  B : NN0 --> CC )
6050ad2antlr 708 . . . . . . . 8  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  k  <_  M )  ->  k  e.  ( 0 ... ( M  +  N )
) )
61 fznn0sub 11017 . . . . . . . 8  |-  ( k  e.  ( 0 ... ( M  +  N
) )  ->  (
( M  +  N
)  -  k )  e.  NN0 )
6260, 61syl 16 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  k  <_  M )  ->  (
( M  +  N
)  -  k )  e.  NN0 )
6359, 62ffvelrnd 5810 . . . . . 6  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  k  <_  M )  ->  ( B `  ( ( M  +  N )  -  k ) )  e.  CC )
6463mul02d 9196 . . . . 5  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  k  <_  M )  ->  (
0  x.  ( B `
 ( ( M  +  N )  -  k ) ) )  =  0 )
6558, 64eqtrd 2419 . . . 4  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  k  <_  M )  ->  (
( A `  k
)  x.  ( B `
 ( ( M  +  N )  -  k ) ) )  =  0 )
6616adantr 452 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  ->  M  e.  RR )
6750adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
k  e.  ( 0 ... ( M  +  N ) ) )
6867, 51syl 16 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
k  e.  NN0 )
6968nn0red 10207 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
k  e.  RR )
7017adantr 452 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  ->  N  e.  RR )
7166, 69, 70leadd1d 9552 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( M  <_  k  <->  ( M  +  N )  <_  ( k  +  N ) ) )
728adantr 452 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( M  +  N
)  e.  NN0 )
7372nn0red 10207 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( M  +  N
)  e.  RR )
7473, 69, 70lesubadd2d 9557 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( ( ( M  +  N )  -  k )  <_  N  <->  ( M  +  N )  <_  ( k  +  N ) ) )
7571, 74bitr4d 248 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( M  <_  k  <->  ( ( M  +  N
)  -  k )  <_  N ) )
7675notbid 286 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( -.  M  <_ 
k  <->  -.  ( ( M  +  N )  -  k )  <_  N ) )
7776biimpa 471 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  M  <_ 
k )  ->  -.  ( ( M  +  N )  -  k
)  <_  N )
78 simpr 448 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  G  e.  (Poly `  S ) )
7950, 61syl 16 . . . . . . . . . 10  |-  ( k  e.  ( ( 0 ... ( M  +  N ) )  \  { M } )  -> 
( ( M  +  N )  -  k
)  e.  NN0 )
8010, 4dgrub 20020 . . . . . . . . . . 11  |-  ( ( G  e.  (Poly `  S )  /\  (
( M  +  N
)  -  k )  e.  NN0  /\  ( B `  ( ( M  +  N )  -  k ) )  =/=  0 )  -> 
( ( M  +  N )  -  k
)  <_  N )
81803expia 1155 . . . . . . . . . 10  |-  ( ( G  e.  (Poly `  S )  /\  (
( M  +  N
)  -  k )  e.  NN0 )  -> 
( ( B `  ( ( M  +  N )  -  k
) )  =/=  0  ->  ( ( M  +  N )  -  k
)  <_  N )
)
8278, 79, 81syl2an 464 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( ( B `  ( ( M  +  N )  -  k
) )  =/=  0  ->  ( ( M  +  N )  -  k
)  <_  N )
)
8382necon1bd 2618 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( -.  ( ( M  +  N )  -  k )  <_  N  ->  ( B `  ( ( M  +  N )  -  k
) )  =  0 ) )
8483imp 419 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  ( ( M  +  N )  -  k )  <_  N )  ->  ( B `  ( ( M  +  N )  -  k ) )  =  0 )
8577, 84syldan 457 . . . . . 6  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  M  <_ 
k )  ->  ( B `  ( ( M  +  N )  -  k ) )  =  0 )
8685oveq2d 6036 . . . . 5  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  M  <_ 
k )  ->  (
( A `  k
)  x.  ( B `
 ( ( M  +  N )  -  k ) ) )  =  ( ( A `
 k )  x.  0 ) )
8740ad2antrr 707 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  M  <_ 
k )  ->  A : NN0 --> CC )
8852ad2antlr 708 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  M  <_ 
k )  ->  k  e.  NN0 )
8987, 88ffvelrnd 5810 . . . . . 6  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  M  <_ 
k )  ->  ( A `  k )  e.  CC )
9089mul01d 9197 . . . . 5  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  M  <_ 
k )  ->  (
( A `  k
)  x.  0 )  =  0 )
9186, 90eqtrd 2419 . . . 4  |-  ( ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  /\  k  e.  ( (
0 ... ( M  +  N ) )  \  { M } ) )  /\  -.  M  <_ 
k )  ->  (
( A `  k
)  x.  ( B `
 ( ( M  +  N )  -  k ) ) )  =  0 )
92 eldifsni 3871 . . . . . . 7  |-  ( k  e.  ( ( 0 ... ( M  +  N ) )  \  { M } )  -> 
k  =/=  M )
9392adantl 453 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
k  =/=  M )
9469, 66letri3d 9147 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( k  =  M  <-> 
( k  <_  M  /\  M  <_  k ) ) )
9594necon3abid 2583 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( k  =/=  M  <->  -.  ( k  <_  M  /\  M  <_  k ) ) )
9693, 95mpbid 202 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  ->  -.  ( k  <_  M  /\  M  <_  k ) )
97 ianor 475 . . . . 5  |-  ( -.  ( k  <_  M  /\  M  <_  k )  <-> 
( -.  k  <_  M  \/  -.  M  <_  k ) )
9896, 97sylib 189 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( -.  k  <_  M  \/  -.  M  <_  k ) )
9965, 91, 98mpjaodan 762 . . 3  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  { M } ) )  -> 
( ( A `  k )  x.  ( B `  ( ( M  +  N )  -  k ) ) )  =  0 )
100 fzfid 11239 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( 0 ... ( M  +  N ) )  e. 
Fin )
10126, 48, 99, 100fsumss 12446 . 2  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  sum_ k  e. 
{ M }  (
( A `  k
)  x.  ( B `
 ( ( M  +  N )  -  k ) ) )  =  sum_ k  e.  ( 0 ... ( M  +  N ) ) ( ( A `  k )  x.  ( B `  ( ( M  +  N )  -  k ) ) ) )
10232sumsn 12461 . . . 4  |-  ( ( M  e.  NN0  /\  ( ( A `  M )  x.  ( B `  ( ( M  +  N )  -  M ) ) )  e.  CC )  ->  sum_ k  e.  { M }  ( ( A `
 k )  x.  ( B `  (
( M  +  N
)  -  k ) ) )  =  ( ( A `  M
)  x.  ( B `
 ( ( M  +  N )  -  M ) ) ) )
10315, 46, 102syl2anc 643 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  sum_ k  e. 
{ M }  (
( A `  k
)  x.  ( B `
 ( ( M  +  N )  -  k ) ) )  =  ( ( A `
 M )  x.  ( B `  (
( M  +  N
)  -  M ) ) ) )
104103, 38eqtrd 2419 . 2  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  sum_ k  e. 
{ M }  (
( A `  k
)  x.  ( B `
 ( ( M  +  N )  -  k ) ) )  =  ( ( A `
 M )  x.  ( B `  N
) ) )
10512, 101, 1043eqtr2d 2425 1  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )
)  ->  ( (coeff `  ( F  o F  x.  G ) ) `
 ( M  +  N ) )  =  ( ( A `  M )  x.  ( B `  N )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2550    \ cdif 3260   {csn 3757   class class class wbr 4153   -->wf 5390   ` cfv 5394  (class class class)co 6020    o Fcof 6242   CCcc 8921   RRcr 8922   0cc0 8923    + caddc 8926    x. cmul 8928    <_ cle 9054    - cmin 9223   NN0cn0 10153   ZZcz 10214   ZZ>=cuz 10420   ...cfz 10975   sum_csu 12406  Polycply 19970  coeffccoe 19972  degcdgr 19973
This theorem is referenced by:  dgrmul  20055  plymul0or  20065  plydivlem4  20080  vieta1lem2  20095
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001  ax-addf 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-of 6244  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-er 6841  df-map 6956  df-pm 6957  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-sup 7381  df-oi 7412  df-card 7759  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-n0 10154  df-z 10215  df-uz 10421  df-rp 10545  df-fz 10976  df-fzo 11066  df-fl 11129  df-seq 11251  df-exp 11310  df-hash 11546  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-clim 12209  df-rlim 12210  df-sum 12407  df-0p 19429  df-ply 19974  df-coe 19976  df-dgr 19977
  Copyright terms: Public domain W3C validator