Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coepr Structured version   Unicode version

Theorem coepr 25380
 Description: Composition with the converse of epsilon. (Contributed by Scott Fenton, 18-Feb-2013.)
Hypotheses
Ref Expression
coep.1
coep.2
Assertion
Ref Expression
coepr
Distinct variable groups:   ,   ,   ,

Proof of Theorem coepr
StepHypRef Expression
1 coep.1 . . . . . 6
2 vex 2961 . . . . . 6
31, 2brcnv 5058 . . . . 5
41epelc 4499 . . . . 5
53, 4bitri 242 . . . 4
65anbi1i 678 . . 3
76exbii 1593 . 2
8 coep.2 . . 3
91, 8brco 5046 . 2
10 df-rex 2713 . 2
117, 9, 103bitr4i 270 1
 Colors of variables: wff set class Syntax hints:   wb 178   wa 360  wex 1551   wcel 1726  wrex 2708  cvv 2958   class class class wbr 4215   cep 4495  ccnv 4880   ccom 4885 This theorem is referenced by:  elfuns  25765  brub  25804 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-br 4216  df-opab 4270  df-eprel 4497  df-cnv 4889  df-co 4890
 Copyright terms: Public domain W3C validator