Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coeq0i Unicode version

Theorem coeq0i 26832
Description: coeq0 26831 but without explicitly introducing domain and range symbols. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Assertion
Ref Expression
coeq0i  |-  ( ( A : C --> D  /\  B : E --> F  /\  ( C  i^i  F )  =  (/) )  ->  ( A  o.  B )  =  (/) )

Proof of Theorem coeq0i
StepHypRef Expression
1 frn 5395 . . . . . 6  |-  ( B : E --> F  ->  ran  B  C_  F )
213ad2ant2 977 . . . . 5  |-  ( ( A : C --> D  /\  B : E --> F  /\  ( C  i^i  F )  =  (/) )  ->  ran  B 
C_  F )
3 sslin 3395 . . . . 5  |-  ( ran 
B  C_  F  ->  ( dom  A  i^i  ran  B )  C_  ( dom  A  i^i  F ) )
42, 3syl 15 . . . 4  |-  ( ( A : C --> D  /\  B : E --> F  /\  ( C  i^i  F )  =  (/) )  ->  ( dom  A  i^i  ran  B
)  C_  ( dom  A  i^i  F ) )
5 fdm 5393 . . . . . . 7  |-  ( A : C --> D  ->  dom  A  =  C )
653ad2ant1 976 . . . . . 6  |-  ( ( A : C --> D  /\  B : E --> F  /\  ( C  i^i  F )  =  (/) )  ->  dom  A  =  C )
76ineq1d 3369 . . . . 5  |-  ( ( A : C --> D  /\  B : E --> F  /\  ( C  i^i  F )  =  (/) )  ->  ( dom  A  i^i  F )  =  ( C  i^i  F ) )
8 simp3 957 . . . . 5  |-  ( ( A : C --> D  /\  B : E --> F  /\  ( C  i^i  F )  =  (/) )  ->  ( C  i^i  F )  =  (/) )
97, 8eqtrd 2315 . . . 4  |-  ( ( A : C --> D  /\  B : E --> F  /\  ( C  i^i  F )  =  (/) )  ->  ( dom  A  i^i  F )  =  (/) )
104, 9sseqtrd 3214 . . 3  |-  ( ( A : C --> D  /\  B : E --> F  /\  ( C  i^i  F )  =  (/) )  ->  ( dom  A  i^i  ran  B
)  C_  (/) )
11 ss0 3485 . . 3  |-  ( ( dom  A  i^i  ran  B )  C_  (/)  ->  ( dom  A  i^i  ran  B
)  =  (/) )
1210, 11syl 15 . 2  |-  ( ( A : C --> D  /\  B : E --> F  /\  ( C  i^i  F )  =  (/) )  ->  ( dom  A  i^i  ran  B
)  =  (/) )
13 coeq0 26831 . 2  |-  ( ( A  o.  B )  =  (/)  <->  ( dom  A  i^i  ran  B )  =  (/) )
1412, 13sylibr 203 1  |-  ( ( A : C --> D  /\  B : E --> F  /\  ( C  i^i  F )  =  (/) )  ->  ( A  o.  B )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934    = wceq 1623    i^i cin 3151    C_ wss 3152   (/)c0 3455   dom cdm 4689   ran crn 4690    o. ccom 4693   -->wf 5251
This theorem is referenced by:  diophren  26896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-fn 5258  df-f 5259
  Copyright terms: Public domain W3C validator