Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeq12i Structured version   Unicode version

Theorem coeq12i 5028
 Description: Equality inference for composition of two classes. (Contributed by FL, 7-Jun-2012.)
Hypotheses
Ref Expression
coeq12i.1
coeq12i.2
Assertion
Ref Expression
coeq12i

Proof of Theorem coeq12i
StepHypRef Expression
1 coeq12i.1 . . 3
21coeq1i 5024 . 2
3 coeq12i.2 . . 3
43coeq2i 5025 . 2
52, 4eqtri 2455 1
 Colors of variables: wff set class Syntax hints:   wceq 1652   ccom 4874 This theorem is referenced by:  imsval  22169  pjcmul1i  23696 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-in 3319  df-ss 3326  df-br 4205  df-opab 4259  df-co 4879
 Copyright terms: Public domain W3C validator