MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeval Unicode version

Theorem coeval 20009
Description: Value of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
coeval  |-  ( F  e.  (Poly `  S
)  ->  (coeff `  F
)  =  ( iota_ a  e.  ( CC  ^m  NN0 ) E. n  e. 
NN0  ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) ) )
Distinct variable groups:    z, k    n, a, F    S, a, n    k, a, z, n
Allowed substitution hints:    S( z, k)    F( z, k)

Proof of Theorem coeval
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 plyssc 19986 . . 3  |-  (Poly `  S )  C_  (Poly `  CC )
21sseli 3287 . 2  |-  ( F  e.  (Poly `  S
)  ->  F  e.  (Poly `  CC ) )
3 eqeq1 2393 . . . . . 6  |-  ( f  =  F  ->  (
f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( z ^ k
) ) )  <->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
43anbi2d 685 . . . . 5  |-  ( f  =  F  ->  (
( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  <->  ( (
a " ( ZZ>= `  ( n  +  1
) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) ) )
54rexbidv 2670 . . . 4  |-  ( f  =  F  ->  ( E. n  e.  NN0  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )  <->  E. n  e.  NN0  ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) ) )
65riotabidv 6487 . . 3  |-  ( f  =  F  ->  ( iota_ a  e.  ( CC 
^m  NN0 ) E. n  e.  NN0  ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) )  =  ( iota_ a  e.  ( CC  ^m  NN0 ) E. n  e.  NN0  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) ) )
7 df-coe 19976 . . 3  |- coeff  =  ( f  e.  (Poly `  CC )  |->  ( iota_ a  e.  ( CC  ^m  NN0 ) E. n  e. 
NN0  ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) ) )
8 riotaex 6489 . . 3  |-  ( iota_ a  e.  ( CC  ^m  NN0 ) E. n  e. 
NN0  ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) )  e.  _V
96, 7, 8fvmpt 5745 . 2  |-  ( F  e.  (Poly `  CC )  ->  (coeff `  F
)  =  ( iota_ a  e.  ( CC  ^m  NN0 ) E. n  e. 
NN0  ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) ) )
102, 9syl 16 1  |-  ( F  e.  (Poly `  S
)  ->  (coeff `  F
)  =  ( iota_ a  e.  ( CC  ^m  NN0 ) E. n  e. 
NN0  ( ( a
" ( ZZ>= `  (
n  +  1 ) ) )  =  {
0 }  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   E.wrex 2650   {csn 3757    e. cmpt 4207   "cima 4821   ` cfv 5394  (class class class)co 6020   iota_crio 6478    ^m cmap 6954   CCcc 8921   0cc0 8923   1c1 8924    + caddc 8926    x. cmul 8928   NN0cn0 10153   ZZ>=cuz 10420   ...cfz 10975   ^cexp 11309   sum_csu 12406  Polycply 19970  coeffccoe 19972
This theorem is referenced by:  coelem  20012  coeeq  20013
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-i2m1 8991  ax-1ne0 8992  ax-rrecex 8995  ax-cnre 8996
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-map 6956  df-nn 9933  df-n0 10154  df-ply 19974  df-coe 19976
  Copyright terms: Public domain W3C validator