MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofu1 Unicode version

Theorem cofu1 13774
Description: Value of the object part of the functor composition. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
cofuval.b  |-  B  =  ( Base `  C
)
cofuval.f  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
cofuval.g  |-  ( ph  ->  G  e.  ( D 
Func  E ) )
cofu2nd.x  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
cofu1  |-  ( ph  ->  ( ( 1st `  ( G  o.func 
F ) ) `  X )  =  ( ( 1st `  G
) `  ( ( 1st `  F ) `  X ) ) )

Proof of Theorem cofu1
StepHypRef Expression
1 cofuval.b . . . 4  |-  B  =  ( Base `  C
)
2 cofuval.f . . . 4  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
3 cofuval.g . . . 4  |-  ( ph  ->  G  e.  ( D 
Func  E ) )
41, 2, 3cofu1st 13773 . . 3  |-  ( ph  ->  ( 1st `  ( G  o.func 
F ) )  =  ( ( 1st `  G
)  o.  ( 1st `  F ) ) )
54fveq1d 5543 . 2  |-  ( ph  ->  ( ( 1st `  ( G  o.func 
F ) ) `  X )  =  ( ( ( 1st `  G
)  o.  ( 1st `  F ) ) `  X ) )
6 eqid 2296 . . . 4  |-  ( Base `  D )  =  (
Base `  D )
7 relfunc 13752 . . . . 5  |-  Rel  ( C  Func  D )
8 1st2ndbr 6185 . . . . 5  |-  ( ( Rel  ( C  Func  D )  /\  F  e.  ( C  Func  D
) )  ->  ( 1st `  F ) ( C  Func  D )
( 2nd `  F
) )
97, 2, 8sylancr 644 . . . 4  |-  ( ph  ->  ( 1st `  F
) ( C  Func  D ) ( 2nd `  F
) )
101, 6, 9funcf1 13756 . . 3  |-  ( ph  ->  ( 1st `  F
) : B --> ( Base `  D ) )
11 cofu2nd.x . . 3  |-  ( ph  ->  X  e.  B )
12 fvco3 5612 . . 3  |-  ( ( ( 1st `  F
) : B --> ( Base `  D )  /\  X  e.  B )  ->  (
( ( 1st `  G
)  o.  ( 1st `  F ) ) `  X )  =  ( ( 1st `  G
) `  ( ( 1st `  F ) `  X ) ) )
1310, 11, 12syl2anc 642 . 2  |-  ( ph  ->  ( ( ( 1st `  G )  o.  ( 1st `  F ) ) `
 X )  =  ( ( 1st `  G
) `  ( ( 1st `  F ) `  X ) ) )
145, 13eqtrd 2328 1  |-  ( ph  ->  ( ( 1st `  ( G  o.func 
F ) ) `  X )  =  ( ( 1st `  G
) `  ( ( 1st `  F ) `  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632    e. wcel 1696   class class class wbr 4039    o. ccom 4709   Rel wrel 4710   -->wf 5267   ` cfv 5271  (class class class)co 5874   1stc1st 6136   2ndc2nd 6137   Basecbs 13164    Func cfunc 13744    o.func ccofu 13746
This theorem is referenced by:  cofucl  13778  cofuass  13779  cofull  13824  cofth  13825  catciso  13955  1st2ndprf  13996  uncf1  14026  uncf2  14027  yonedalem21  14063  yonedalem22  14068
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-map 6790  df-ixp 6834  df-func 13748  df-cofu 13750
  Copyright terms: Public domain W3C validator