Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofu1st Structured version   Unicode version

Theorem cofu1st 14080
 Description: Value of the object part of the functor composition. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cofuval.b
cofuval.f
cofuval.g
Assertion
Ref Expression
cofu1st func

Proof of Theorem cofu1st
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cofuval.b . . . 4
2 cofuval.f . . . 4
3 cofuval.g . . . 4
41, 2, 3cofuval 14079 . . 3 func
54fveq2d 5732 . 2 func
6 fvex 5742 . . . 4
7 fvex 5742 . . . 4
86, 7coex 5413 . . 3
9 fvex 5742 . . . . 5
101, 9eqeltri 2506 . . . 4
1110, 10mpt2ex 6425 . . 3
128, 11op1st 6355 . 2
135, 12syl6eq 2484 1 func
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1652   wcel 1725  cvv 2956  cop 3817   ccom 4882  cfv 5454  (class class class)co 6081   cmpt2 6083  c1st 6347  c2nd 6348  cbs 13469   cfunc 14051   func ccofu 14053 This theorem is referenced by:  cofu1  14081  cofucl  14085  cofuass  14086  catciso  14262 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-map 7020  df-ixp 7064  df-func 14055  df-cofu 14057
 Copyright terms: Public domain W3C validator