MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofu1st Structured version   Unicode version

Theorem cofu1st 14080
Description: Value of the object part of the functor composition. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cofuval.b  |-  B  =  ( Base `  C
)
cofuval.f  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
cofuval.g  |-  ( ph  ->  G  e.  ( D 
Func  E ) )
Assertion
Ref Expression
cofu1st  |-  ( ph  ->  ( 1st `  ( G  o.func 
F ) )  =  ( ( 1st `  G
)  o.  ( 1st `  F ) ) )

Proof of Theorem cofu1st
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cofuval.b . . . 4  |-  B  =  ( Base `  C
)
2 cofuval.f . . . 4  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
3 cofuval.g . . . 4  |-  ( ph  ->  G  e.  ( D 
Func  E ) )
41, 2, 3cofuval 14079 . . 3  |-  ( ph  ->  ( G  o.func  F )  =  <. ( ( 1st `  G )  o.  ( 1st `  F ) ) ,  ( x  e.  B ,  y  e.  B  |->  ( ( ( ( 1st `  F
) `  x )
( 2nd `  G
) ( ( 1st `  F ) `  y
) )  o.  (
x ( 2nd `  F
) y ) ) ) >. )
54fveq2d 5732 . 2  |-  ( ph  ->  ( 1st `  ( G  o.func 
F ) )  =  ( 1st `  <. ( ( 1st `  G
)  o.  ( 1st `  F ) ) ,  ( x  e.  B ,  y  e.  B  |->  ( ( ( ( 1st `  F ) `
 x ) ( 2nd `  G ) ( ( 1st `  F
) `  y )
)  o.  ( x ( 2nd `  F
) y ) ) ) >. ) )
6 fvex 5742 . . . 4  |-  ( 1st `  G )  e.  _V
7 fvex 5742 . . . 4  |-  ( 1st `  F )  e.  _V
86, 7coex 5413 . . 3  |-  ( ( 1st `  G )  o.  ( 1st `  F
) )  e.  _V
9 fvex 5742 . . . . 5  |-  ( Base `  C )  e.  _V
101, 9eqeltri 2506 . . . 4  |-  B  e. 
_V
1110, 10mpt2ex 6425 . . 3  |-  ( x  e.  B ,  y  e.  B  |->  ( ( ( ( 1st `  F
) `  x )
( 2nd `  G
) ( ( 1st `  F ) `  y
) )  o.  (
x ( 2nd `  F
) y ) ) )  e.  _V
128, 11op1st 6355 . 2  |-  ( 1st `  <. ( ( 1st `  G )  o.  ( 1st `  F ) ) ,  ( x  e.  B ,  y  e.  B  |->  ( ( ( ( 1st `  F
) `  x )
( 2nd `  G
) ( ( 1st `  F ) `  y
) )  o.  (
x ( 2nd `  F
) y ) ) ) >. )  =  ( ( 1st `  G
)  o.  ( 1st `  F ) )
135, 12syl6eq 2484 1  |-  ( ph  ->  ( 1st `  ( G  o.func 
F ) )  =  ( ( 1st `  G
)  o.  ( 1st `  F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652    e. wcel 1725   _Vcvv 2956   <.cop 3817    o. ccom 4882   ` cfv 5454  (class class class)co 6081    e. cmpt2 6083   1stc1st 6347   2ndc2nd 6348   Basecbs 13469    Func cfunc 14051    o.func ccofu 14053
This theorem is referenced by:  cofu1  14081  cofucl  14085  cofuass  14086  catciso  14262
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-map 7020  df-ixp 7064  df-func 14055  df-cofu 14057
  Copyright terms: Public domain W3C validator