MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofunexg Structured version   Unicode version

Theorem cofunexg 5951
Description: Existence of a composition when the first member is a function. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cofunexg  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  o.  B )  e.  _V )

Proof of Theorem cofunexg
StepHypRef Expression
1 relco 5360 . . 3  |-  Rel  ( A  o.  B )
2 relssdmrn 5382 . . 3  |-  ( Rel  ( A  o.  B
)  ->  ( A  o.  B )  C_  ( dom  ( A  o.  B
)  X.  ran  ( A  o.  B )
) )
31, 2ax-mp 8 . 2  |-  ( A  o.  B )  C_  ( dom  ( A  o.  B )  X.  ran  ( A  o.  B
) )
4 dmcoss 5127 . . . . 5  |-  dom  ( A  o.  B )  C_ 
dom  B
5 dmexg 5122 . . . . 5  |-  ( B  e.  C  ->  dom  B  e.  _V )
6 ssexg 4341 . . . . 5  |-  ( ( dom  ( A  o.  B )  C_  dom  B  /\  dom  B  e. 
_V )  ->  dom  ( A  o.  B
)  e.  _V )
74, 5, 6sylancr 645 . . . 4  |-  ( B  e.  C  ->  dom  ( A  o.  B
)  e.  _V )
87adantl 453 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  dom  ( A  o.  B
)  e.  _V )
9 rnco 5368 . . . 4  |-  ran  ( A  o.  B )  =  ran  ( A  |`  ran  B )
10 rnexg 5123 . . . . . 6  |-  ( B  e.  C  ->  ran  B  e.  _V )
11 resfunexg 5949 . . . . . 6  |-  ( ( Fun  A  /\  ran  B  e.  _V )  -> 
( A  |`  ran  B
)  e.  _V )
1210, 11sylan2 461 . . . . 5  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  ran  B )  e.  _V )
13 rnexg 5123 . . . . 5  |-  ( ( A  |`  ran  B )  e.  _V  ->  ran  ( A  |`  ran  B
)  e.  _V )
1412, 13syl 16 . . . 4  |-  ( ( Fun  A  /\  B  e.  C )  ->  ran  ( A  |`  ran  B
)  e.  _V )
159, 14syl5eqel 2519 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  ran  ( A  o.  B
)  e.  _V )
16 xpexg 4981 . . 3  |-  ( ( dom  ( A  o.  B )  e.  _V  /\ 
ran  ( A  o.  B )  e.  _V )  ->  ( dom  ( A  o.  B )  X.  ran  ( A  o.  B ) )  e. 
_V )
178, 15, 16syl2anc 643 . 2  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( dom  ( A  o.  B
)  X.  ran  ( A  o.  B )
)  e.  _V )
18 ssexg 4341 . 2  |-  ( ( ( A  o.  B
)  C_  ( dom  ( A  o.  B
)  X.  ran  ( A  o.  B )
)  /\  ( dom  ( A  o.  B
)  X.  ran  ( A  o.  B )
)  e.  _V )  ->  ( A  o.  B
)  e.  _V )
193, 17, 18sylancr 645 1  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  o.  B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    e. wcel 1725   _Vcvv 2948    C_ wss 3312    X. cxp 4868   dom cdm 4870   ran crn 4871    |` cres 4872    o. ccom 4874   Rel wrel 4875   Fun wfun 5440
This theorem is referenced by:  cofunex2g  5952  fin1a2lem7  8278  revco  11795  ccatco  11796  isoval  13982  bcthlem4  19272  sinccvglem  25101
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454
  Copyright terms: Public domain W3C validator