MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofuval Unicode version

Theorem cofuval 13756
Description: Value of the composition of two functors. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cofuval.b  |-  B  =  ( Base `  C
)
cofuval.f  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
cofuval.g  |-  ( ph  ->  G  e.  ( D 
Func  E ) )
Assertion
Ref Expression
cofuval  |-  ( ph  ->  ( G  o.func  F )  =  <. ( ( 1st `  G )  o.  ( 1st `  F ) ) ,  ( x  e.  B ,  y  e.  B  |->  ( ( ( ( 1st `  F
) `  x )
( 2nd `  G
) ( ( 1st `  F ) `  y
) )  o.  (
x ( 2nd `  F
) y ) ) ) >. )
Distinct variable groups:    x, y, B    x, F, y    x, G, y    ph, x, y
Allowed substitution hints:    C( x, y)    D( x, y)    E( x, y)

Proof of Theorem cofuval
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cofu 13734 . . 3  |-  o.func  =  (
g  e.  _V , 
f  e.  _V  |->  <.
( ( 1st `  g
)  o.  ( 1st `  f ) ) ,  ( x  e.  dom  dom  ( 2nd `  f
) ,  y  e. 
dom  dom  ( 2nd `  f
)  |->  ( ( ( ( 1st `  f
) `  x )
( 2nd `  g
) ( ( 1st `  f ) `  y
) )  o.  (
x ( 2nd `  f
) y ) ) ) >. )
21a1i 10 . 2  |-  ( ph  ->  o.func  =  ( g  e. 
_V ,  f  e. 
_V  |->  <. ( ( 1st `  g )  o.  ( 1st `  f ) ) ,  ( x  e. 
dom  dom  ( 2nd `  f
) ,  y  e. 
dom  dom  ( 2nd `  f
)  |->  ( ( ( ( 1st `  f
) `  x )
( 2nd `  g
) ( ( 1st `  f ) `  y
) )  o.  (
x ( 2nd `  f
) y ) ) ) >. ) )
3 simprl 732 . . . . 5  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  -> 
g  =  G )
43fveq2d 5529 . . . 4  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  -> 
( 1st `  g
)  =  ( 1st `  G ) )
5 simprr 733 . . . . 5  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  -> 
f  =  F )
65fveq2d 5529 . . . 4  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  -> 
( 1st `  f
)  =  ( 1st `  F ) )
74, 6coeq12d 4848 . . 3  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  -> 
( ( 1st `  g
)  o.  ( 1st `  f ) )  =  ( ( 1st `  G
)  o.  ( 1st `  F ) ) )
85fveq2d 5529 . . . . . . . 8  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  -> 
( 2nd `  f
)  =  ( 2nd `  F ) )
98dmeqd 4881 . . . . . . 7  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  ->  dom  ( 2nd `  f
)  =  dom  ( 2nd `  F ) )
10 cofuval.b . . . . . . . . . 10  |-  B  =  ( Base `  C
)
11 relfunc 13736 . . . . . . . . . . 11  |-  Rel  ( C  Func  D )
12 cofuval.f . . . . . . . . . . 11  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
13 1st2ndbr 6169 . . . . . . . . . . 11  |-  ( ( Rel  ( C  Func  D )  /\  F  e.  ( C  Func  D
) )  ->  ( 1st `  F ) ( C  Func  D )
( 2nd `  F
) )
1411, 12, 13sylancr 644 . . . . . . . . . 10  |-  ( ph  ->  ( 1st `  F
) ( C  Func  D ) ( 2nd `  F
) )
1510, 14funcfn2 13743 . . . . . . . . 9  |-  ( ph  ->  ( 2nd `  F
)  Fn  ( B  X.  B ) )
16 fndm 5343 . . . . . . . . 9  |-  ( ( 2nd `  F )  Fn  ( B  X.  B )  ->  dom  ( 2nd `  F )  =  ( B  X.  B ) )
1715, 16syl 15 . . . . . . . 8  |-  ( ph  ->  dom  ( 2nd `  F
)  =  ( B  X.  B ) )
1817adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  ->  dom  ( 2nd `  F
)  =  ( B  X.  B ) )
199, 18eqtrd 2315 . . . . . 6  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  ->  dom  ( 2nd `  f
)  =  ( B  X.  B ) )
2019dmeqd 4881 . . . . 5  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  ->  dom  dom  ( 2nd `  f
)  =  dom  ( B  X.  B ) )
21 dmxpid 4898 . . . . 5  |-  dom  ( B  X.  B )  =  B
2220, 21syl6eq 2331 . . . 4  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  ->  dom  dom  ( 2nd `  f
)  =  B )
233fveq2d 5529 . . . . . 6  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  -> 
( 2nd `  g
)  =  ( 2nd `  G ) )
246fveq1d 5527 . . . . . 6  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  -> 
( ( 1st `  f
) `  x )  =  ( ( 1st `  F ) `  x
) )
256fveq1d 5527 . . . . . 6  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  -> 
( ( 1st `  f
) `  y )  =  ( ( 1st `  F ) `  y
) )
2623, 24, 25oveq123d 5879 . . . . 5  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  -> 
( ( ( 1st `  f ) `  x
) ( 2nd `  g
) ( ( 1st `  f ) `  y
) )  =  ( ( ( 1st `  F
) `  x )
( 2nd `  G
) ( ( 1st `  F ) `  y
) ) )
278oveqd 5875 . . . . 5  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  -> 
( x ( 2nd `  f ) y )  =  ( x ( 2nd `  F ) y ) )
2826, 27coeq12d 4848 . . . 4  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  -> 
( ( ( ( 1st `  f ) `
 x ) ( 2nd `  g ) ( ( 1st `  f
) `  y )
)  o.  ( x ( 2nd `  f
) y ) )  =  ( ( ( ( 1st `  F
) `  x )
( 2nd `  G
) ( ( 1st `  F ) `  y
) )  o.  (
x ( 2nd `  F
) y ) ) )
2922, 22, 28mpt2eq123dv 5910 . . 3  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  -> 
( x  e.  dom  dom  ( 2nd `  f
) ,  y  e. 
dom  dom  ( 2nd `  f
)  |->  ( ( ( ( 1st `  f
) `  x )
( 2nd `  g
) ( ( 1st `  f ) `  y
) )  o.  (
x ( 2nd `  f
) y ) ) )  =  ( x  e.  B ,  y  e.  B  |->  ( ( ( ( 1st `  F
) `  x )
( 2nd `  G
) ( ( 1st `  F ) `  y
) )  o.  (
x ( 2nd `  F
) y ) ) ) )
307, 29opeq12d 3804 . 2  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  ->  <. ( ( 1st `  g
)  o.  ( 1st `  f ) ) ,  ( x  e.  dom  dom  ( 2nd `  f
) ,  y  e. 
dom  dom  ( 2nd `  f
)  |->  ( ( ( ( 1st `  f
) `  x )
( 2nd `  g
) ( ( 1st `  f ) `  y
) )  o.  (
x ( 2nd `  f
) y ) ) ) >.  =  <. ( ( 1st `  G
)  o.  ( 1st `  F ) ) ,  ( x  e.  B ,  y  e.  B  |->  ( ( ( ( 1st `  F ) `
 x ) ( 2nd `  G ) ( ( 1st `  F
) `  y )
)  o.  ( x ( 2nd `  F
) y ) ) ) >. )
31 cofuval.g . . 3  |-  ( ph  ->  G  e.  ( D 
Func  E ) )
32 elex 2796 . . 3  |-  ( G  e.  ( D  Func  E )  ->  G  e.  _V )
3331, 32syl 15 . 2  |-  ( ph  ->  G  e.  _V )
34 elex 2796 . . 3  |-  ( F  e.  ( C  Func  D )  ->  F  e.  _V )
3512, 34syl 15 . 2  |-  ( ph  ->  F  e.  _V )
36 opex 4237 . . 3  |-  <. (
( 1st `  G
)  o.  ( 1st `  F ) ) ,  ( x  e.  B ,  y  e.  B  |->  ( ( ( ( 1st `  F ) `
 x ) ( 2nd `  G ) ( ( 1st `  F
) `  y )
)  o.  ( x ( 2nd `  F
) y ) ) ) >.  e.  _V
3736a1i 10 . 2  |-  ( ph  -> 
<. ( ( 1st `  G
)  o.  ( 1st `  F ) ) ,  ( x  e.  B ,  y  e.  B  |->  ( ( ( ( 1st `  F ) `
 x ) ( 2nd `  G ) ( ( 1st `  F
) `  y )
)  o.  ( x ( 2nd `  F
) y ) ) ) >.  e.  _V )
382, 30, 33, 35, 37ovmpt2d 5975 1  |-  ( ph  ->  ( G  o.func  F )  =  <. ( ( 1st `  G )  o.  ( 1st `  F ) ) ,  ( x  e.  B ,  y  e.  B  |->  ( ( ( ( 1st `  F
) `  x )
( 2nd `  G
) ( ( 1st `  F ) `  y
) )  o.  (
x ( 2nd `  F
) y ) ) ) >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788   <.cop 3643   class class class wbr 4023    X. cxp 4687   dom cdm 4689    o. ccom 4693   Rel wrel 4694    Fn wfn 5250   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   1stc1st 6120   2ndc2nd 6121   Basecbs 13148    Func cfunc 13728    o.func ccofu 13730
This theorem is referenced by:  cofu1st  13757  cofu2nd  13759  cofuval2  13761  cofucl  13762  cofuass  13763  cofulid  13764  cofurid  13765  prf1st  13978  prf2nd  13979
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-map 6774  df-ixp 6818  df-func 13732  df-cofu 13734
  Copyright terms: Public domain W3C validator