MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coi2 Unicode version

Theorem coi2 5189
Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.)
Assertion
Ref Expression
coi2  |-  ( Rel 
A  ->  (  _I  o.  A )  =  A )

Proof of Theorem coi2
StepHypRef Expression
1 cnvco 4865 . . 3  |-  `' ( `' A  o.  _I  )  =  ( `'  _I  o.  `' `' A
)
2 relcnv 5051 . . . . 5  |-  Rel  `' A
3 coi1 5188 . . . . 5  |-  ( Rel  `' A  ->  ( `' A  o.  _I  )  =  `' A )
42, 3ax-mp 8 . . . 4  |-  ( `' A  o.  _I  )  =  `' A
54cnveqi 4856 . . 3  |-  `' ( `' A  o.  _I  )  =  `' `' A
61, 5eqtr3i 2305 . 2  |-  ( `'  _I  o.  `' `' A )  =  `' `' A
7 dfrel2 5124 . . 3  |-  ( Rel 
A  <->  `' `' A  =  A
)
8 cnvi 5085 . . . 4  |-  `'  _I  =  _I
9 coeq2 4842 . . . . 5  |-  ( `' `' A  =  A  ->  ( `'  _I  o.  `' `' A )  =  ( `'  _I  o.  A ) )
10 coeq1 4841 . . . . 5  |-  ( `'  _I  =  _I  ->  ( `'  _I  o.  A )  =  (  _I  o.  A ) )
119, 10sylan9eq 2335 . . . 4  |-  ( ( `' `' A  =  A  /\  `'  _I  =  _I  )  ->  ( `'  _I  o.  `' `' A )  =  (  _I  o.  A ) )
128, 11mpan2 652 . . 3  |-  ( `' `' A  =  A  ->  ( `'  _I  o.  `' `' A )  =  (  _I  o.  A ) )
137, 12sylbi 187 . 2  |-  ( Rel 
A  ->  ( `'  _I  o.  `' `' A
)  =  (  _I  o.  A ) )
147biimpi 186 . 2  |-  ( Rel 
A  ->  `' `' A  =  A )
156, 13, 143eqtr3a 2339 1  |-  ( Rel 
A  ->  (  _I  o.  A )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    _I cid 4304   `'ccnv 4688    o. ccom 4693   Rel wrel 4694
This theorem is referenced by:  relcoi2  5200  funi  5284  fcoi2  5416  dfps2  25289
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698
  Copyright terms: Public domain W3C validator