MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coiun Unicode version

Theorem coiun 5321
Description: Composition with an indexed union. (Contributed by NM, 21-Dec-2008.)
Assertion
Ref Expression
coiun  |-  ( A  o.  U_ x  e.  C  B )  = 
U_ x  e.  C  ( A  o.  B
)
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem coiun
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 5310 . 2  |-  Rel  ( A  o.  U_ x  e.  C  B )
2 reliun 4937 . . 3  |-  ( Rel  U_ x  e.  C  ( A  o.  B
)  <->  A. x  e.  C  Rel  ( A  o.  B
) )
3 relco 5310 . . . 4  |-  Rel  ( A  o.  B )
43a1i 11 . . 3  |-  ( x  e.  C  ->  Rel  ( A  o.  B
) )
52, 4mprgbir 2721 . 2  |-  Rel  U_ x  e.  C  ( A  o.  B )
6 eliun 4041 . . . . . . . 8  |-  ( <.
y ,  w >.  e. 
U_ x  e.  C  B 
<->  E. x  e.  C  <. y ,  w >.  e.  B )
7 df-br 4156 . . . . . . . 8  |-  ( y
U_ x  e.  C  B w  <->  <. y ,  w >.  e.  U_ x  e.  C  B )
8 df-br 4156 . . . . . . . . 9  |-  ( y B w  <->  <. y ,  w >.  e.  B
)
98rexbii 2676 . . . . . . . 8  |-  ( E. x  e.  C  y B w  <->  E. x  e.  C  <. y ,  w >.  e.  B
)
106, 7, 93bitr4i 269 . . . . . . 7  |-  ( y
U_ x  e.  C  B w  <->  E. x  e.  C  y B w )
1110anbi1i 677 . . . . . 6  |-  ( ( y U_ x  e.  C  B w  /\  w A z )  <->  ( E. x  e.  C  y B w  /\  w A z ) )
12 r19.41v 2806 . . . . . 6  |-  ( E. x  e.  C  ( y B w  /\  w A z )  <->  ( E. x  e.  C  y B w  /\  w A z ) )
1311, 12bitr4i 244 . . . . 5  |-  ( ( y U_ x  e.  C  B w  /\  w A z )  <->  E. x  e.  C  ( y B w  /\  w A z ) )
1413exbii 1589 . . . 4  |-  ( E. w ( y U_ x  e.  C  B w  /\  w A z )  <->  E. w E. x  e.  C  ( y B w  /\  w A z ) )
15 rexcom4 2920 . . . 4  |-  ( E. x  e.  C  E. w ( y B w  /\  w A z )  <->  E. w E. x  e.  C  ( y B w  /\  w A z ) )
1614, 15bitr4i 244 . . 3  |-  ( E. w ( y U_ x  e.  C  B w  /\  w A z )  <->  E. x  e.  C  E. w ( y B w  /\  w A z ) )
17 vex 2904 . . . 4  |-  y  e. 
_V
18 vex 2904 . . . 4  |-  z  e. 
_V
1917, 18opelco 4986 . . 3  |-  ( <.
y ,  z >.  e.  ( A  o.  U_ x  e.  C  B
)  <->  E. w ( y
U_ x  e.  C  B w  /\  w A z ) )
20 eliun 4041 . . . 4  |-  ( <.
y ,  z >.  e.  U_ x  e.  C  ( A  o.  B
)  <->  E. x  e.  C  <. y ,  z >.  e.  ( A  o.  B
) )
2117, 18opelco 4986 . . . . 5  |-  ( <.
y ,  z >.  e.  ( A  o.  B
)  <->  E. w ( y B w  /\  w A z ) )
2221rexbii 2676 . . . 4  |-  ( E. x  e.  C  <. y ,  z >.  e.  ( A  o.  B )  <->  E. x  e.  C  E. w ( y B w  /\  w A z ) )
2320, 22bitri 241 . . 3  |-  ( <.
y ,  z >.  e.  U_ x  e.  C  ( A  o.  B
)  <->  E. x  e.  C  E. w ( y B w  /\  w A z ) )
2416, 19, 233bitr4i 269 . 2  |-  ( <.
y ,  z >.  e.  ( A  o.  U_ x  e.  C  B
)  <->  <. y ,  z
>.  e.  U_ x  e.  C  ( A  o.  B ) )
251, 5, 24eqrelriiv 4912 1  |-  ( A  o.  U_ x  e.  C  B )  = 
U_ x  e.  C  ( A  o.  B
)
Colors of variables: wff set class
Syntax hints:    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1717   E.wrex 2652   <.cop 3762   U_ciun 4037   class class class wbr 4155    o. ccom 4824   Rel wrel 4825
This theorem is referenced by:  fparlem3  6389  fparlem4  6390
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pr 4346
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-rab 2660  df-v 2903  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-sn 3765  df-pr 3766  df-op 3768  df-iun 4039  df-br 4156  df-opab 4210  df-xp 4826  df-rel 4827  df-co 4829
  Copyright terms: Public domain W3C validator