Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  colinearalglem3 Structured version   Unicode version

Theorem colinearalglem3 25839
Description: Lemma for colinearalg 25841. Translate between two forms of the colinearity condition. (Contributed by Scott Fenton, 24-Jun-2013.)
Assertion
Ref Expression
colinearalglem3  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( A. i  e.  (
1 ... N ) A. j  e.  ( 1 ... N ) ( ( ( B `  i )  -  ( A `  i )
)  x.  ( ( C `  j )  -  ( A `  j ) ) )  =  ( ( ( B `  j )  -  ( A `  j ) )  x.  ( ( C `  i )  -  ( A `  i )
) )  <->  A. i  e.  ( 1 ... N
) A. j  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( C `  i ) )  x.  ( ( B `  j )  -  ( C `  j )
) )  =  ( ( ( A `  j )  -  ( C `  j )
)  x.  ( ( B `  i )  -  ( C `  i ) ) ) ) )
Distinct variable groups:    A, i,
j    B, i, j    C, i, j    i, N, j

Proof of Theorem colinearalglem3
StepHypRef Expression
1 colinearalglem2 25838 . 2  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( A. i  e.  (
1 ... N ) A. j  e.  ( 1 ... N ) ( ( ( B `  i )  -  ( A `  i )
)  x.  ( ( C `  j )  -  ( A `  j ) ) )  =  ( ( ( B `  j )  -  ( A `  j ) )  x.  ( ( C `  i )  -  ( A `  i )
) )  <->  A. i  e.  ( 1 ... N
) A. j  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( B `  i ) )  x.  ( ( A `  j )  -  ( B `  j )
) )  =  ( ( ( C `  j )  -  ( B `  j )
)  x.  ( ( A `  i )  -  ( B `  i ) ) ) ) )
2 colinearalglem2 25838 . . 3  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  ->  ( A. i  e.  (
1 ... N ) A. j  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( B `  i )
)  x.  ( ( A `  j )  -  ( B `  j ) ) )  =  ( ( ( C `  j )  -  ( B `  j ) )  x.  ( ( A `  i )  -  ( B `  i )
) )  <->  A. i  e.  ( 1 ... N
) A. j  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( C `  i ) )  x.  ( ( B `  j )  -  ( C `  j )
) )  =  ( ( ( A `  j )  -  ( C `  j )
)  x.  ( ( B `  i )  -  ( C `  i ) ) ) ) )
323comr 1161 . 2  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( A. i  e.  (
1 ... N ) A. j  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( B `  i )
)  x.  ( ( A `  j )  -  ( B `  j ) ) )  =  ( ( ( C `  j )  -  ( B `  j ) )  x.  ( ( A `  i )  -  ( B `  i )
) )  <->  A. i  e.  ( 1 ... N
) A. j  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( C `  i ) )  x.  ( ( B `  j )  -  ( C `  j )
) )  =  ( ( ( A `  j )  -  ( C `  j )
)  x.  ( ( B `  i )  -  ( C `  i ) ) ) ) )
41, 3bitrd 245 1  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( A. i  e.  (
1 ... N ) A. j  e.  ( 1 ... N ) ( ( ( B `  i )  -  ( A `  i )
)  x.  ( ( C `  j )  -  ( A `  j ) ) )  =  ( ( ( B `  j )  -  ( A `  j ) )  x.  ( ( C `  i )  -  ( A `  i )
) )  <->  A. i  e.  ( 1 ... N
) A. j  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( C `  i ) )  x.  ( ( B `  j )  -  ( C `  j )
) )  =  ( ( ( A `  j )  -  ( C `  j )
)  x.  ( ( B `  i )  -  ( C `  i ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697   ` cfv 5446  (class class class)co 6073   1c1 8983    x. cmul 8987    - cmin 9283   ...cfz 11035   EEcee 25819
This theorem is referenced by:  colinearalg  25841
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-riota 6541  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-ltxr 9117  df-sub 9285  df-neg 9286  df-ee 25822
  Copyright terms: Public domain W3C validator