Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  colinearalglem4 Structured version   Unicode version

Theorem colinearalglem4 25841
Description: Lemma for colinearalg 25842. Prove a disjunction that will be needed in the final proof. (Contributed by Scott Fenton, 27-Jun-2013.)
Assertion
Ref Expression
colinearalglem4  |-  ( ( ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  K  e.  RR )  ->  ( A. i  e.  (
1 ... N ) ( ( ( ( K  x.  ( ( C `
 i )  -  ( A `  i ) ) )  +  ( A `  i ) )  -  ( A `
 i ) )  x.  ( ( C `
 i )  -  ( A `  i ) ) )  <_  0  \/  A. i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( ( K  x.  ( ( C `  i )  -  ( A `  i )
) )  +  ( A `  i ) ) )  x.  (
( A `  i
)  -  ( ( K  x.  ( ( C `  i )  -  ( A `  i ) ) )  +  ( A `  i ) ) ) )  <_  0  \/  A. i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( C `  i )
)  x.  ( ( ( K  x.  (
( C `  i
)  -  ( A `
 i ) ) )  +  ( A `
 i ) )  -  ( C `  i ) ) )  <_  0 ) )
Distinct variable groups:    A, i    C, i    i, K    i, N

Proof of Theorem colinearalglem4
StepHypRef Expression
1 relin01 25187 . . 3  |-  ( K  e.  RR  ->  ( K  <_  0  \/  (
0  <_  K  /\  K  <_  1 )  \/  1  <_  K )
)
21adantl 453 . 2  |-  ( ( ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  K  e.  RR )  ->  ( K  <_  0  \/  (
0  <_  K  /\  K  <_  1 )  \/  1  <_  K )
)
3 fveere 25833 . . . . . . . . 9  |-  ( ( A  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( A `  i )  e.  RR )
43adantlr 696 . . . . . . . 8  |-  ( ( ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  ( A `  i )  e.  RR )
5 fveere 25833 . . . . . . . . 9  |-  ( ( C  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( C `  i )  e.  RR )
65adantll 695 . . . . . . . 8  |-  ( ( ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  ( C `  i )  e.  RR )
74, 6jca 519 . . . . . . 7  |-  ( ( ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( A `  i
)  e.  RR  /\  ( C `  i )  e.  RR ) )
8 simprl 733 . . . . . . . . . . 11  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  K  <_ 
0 ) )  ->  K  e.  RR )
98recnd 9107 . . . . . . . . . 10  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  K  <_ 
0 ) )  ->  K  e.  CC )
10 resubcl 9358 . . . . . . . . . . . . 13  |-  ( ( ( C `  i
)  e.  RR  /\  ( A `  i )  e.  RR )  -> 
( ( C `  i )  -  ( A `  i )
)  e.  RR )
1110ancoms 440 . . . . . . . . . . . 12  |-  ( ( ( A `  i
)  e.  RR  /\  ( C `  i )  e.  RR )  -> 
( ( C `  i )  -  ( A `  i )
)  e.  RR )
1211adantr 452 . . . . . . . . . . 11  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  K  <_ 
0 ) )  -> 
( ( C `  i )  -  ( A `  i )
)  e.  RR )
1312recnd 9107 . . . . . . . . . 10  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  K  <_ 
0 ) )  -> 
( ( C `  i )  -  ( A `  i )
)  e.  CC )
149, 13, 13mulassd 9104 . . . . . . . . 9  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  K  <_ 
0 ) )  -> 
( ( K  x.  ( ( C `  i )  -  ( A `  i )
) )  x.  (
( C `  i
)  -  ( A `
 i ) ) )  =  ( K  x.  ( ( ( C `  i )  -  ( A `  i ) )  x.  ( ( C `  i )  -  ( A `  i )
) ) ) )
158, 12remulcld 9109 . . . . . . . . . . . 12  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  K  <_ 
0 ) )  -> 
( K  x.  (
( C `  i
)  -  ( A `
 i ) ) )  e.  RR )
1615recnd 9107 . . . . . . . . . . 11  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  K  <_ 
0 ) )  -> 
( K  x.  (
( C `  i
)  -  ( A `
 i ) ) )  e.  CC )
17 recn 9073 . . . . . . . . . . . 12  |-  ( ( A `  i )  e.  RR  ->  ( A `  i )  e.  CC )
1817ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  K  <_ 
0 ) )  -> 
( A `  i
)  e.  CC )
1916, 18pncand 9405 . . . . . . . . . 10  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  K  <_ 
0 ) )  -> 
( ( ( K  x.  ( ( C `
 i )  -  ( A `  i ) ) )  +  ( A `  i ) )  -  ( A `
 i ) )  =  ( K  x.  ( ( C `  i )  -  ( A `  i )
) ) )
2019oveq1d 6089 . . . . . . . . 9  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  K  <_ 
0 ) )  -> 
( ( ( ( K  x.  ( ( C `  i )  -  ( A `  i ) ) )  +  ( A `  i ) )  -  ( A `  i ) )  x.  ( ( C `  i )  -  ( A `  i ) ) )  =  ( ( K  x.  ( ( C `
 i )  -  ( A `  i ) ) )  x.  (
( C `  i
)  -  ( A `
 i ) ) ) )
2113sqvald 11513 . . . . . . . . . 10  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  K  <_ 
0 ) )  -> 
( ( ( C `
 i )  -  ( A `  i ) ) ^ 2 )  =  ( ( ( C `  i )  -  ( A `  i ) )  x.  ( ( C `  i )  -  ( A `  i )
) ) )
2221oveq2d 6090 . . . . . . . . 9  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  K  <_ 
0 ) )  -> 
( K  x.  (
( ( C `  i )  -  ( A `  i )
) ^ 2 ) )  =  ( K  x.  ( ( ( C `  i )  -  ( A `  i ) )  x.  ( ( C `  i )  -  ( A `  i )
) ) ) )
2314, 20, 223eqtr4d 2478 . . . . . . . 8  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  K  <_ 
0 ) )  -> 
( ( ( ( K  x.  ( ( C `  i )  -  ( A `  i ) ) )  +  ( A `  i ) )  -  ( A `  i ) )  x.  ( ( C `  i )  -  ( A `  i ) ) )  =  ( K  x.  ( ( ( C `
 i )  -  ( A `  i ) ) ^ 2 ) ) )
24 simprr 734 . . . . . . . . . . 11  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  K  <_ 
0 ) )  ->  K  <_  0 )
2512sqge0d 11543 . . . . . . . . . . 11  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  K  <_ 
0 ) )  -> 
0  <_  ( (
( C `  i
)  -  ( A `
 i ) ) ^ 2 ) )
2624, 25jca 519 . . . . . . . . . 10  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  K  <_ 
0 ) )  -> 
( K  <_  0  /\  0  <_  ( ( ( C `  i
)  -  ( A `
 i ) ) ^ 2 ) ) )
2726orcd 382 . . . . . . . . 9  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  K  <_ 
0 ) )  -> 
( ( K  <_ 
0  /\  0  <_  ( ( ( C `  i )  -  ( A `  i )
) ^ 2 ) )  \/  ( 0  <_  K  /\  (
( ( C `  i )  -  ( A `  i )
) ^ 2 )  <_  0 ) ) )
2812resqcld 11542 . . . . . . . . . 10  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  K  <_ 
0 ) )  -> 
( ( ( C `
 i )  -  ( A `  i ) ) ^ 2 )  e.  RR )
29 mulle0b 25185 . . . . . . . . . 10  |-  ( ( K  e.  RR  /\  ( ( ( C `
 i )  -  ( A `  i ) ) ^ 2 )  e.  RR )  -> 
( ( K  x.  ( ( ( C `
 i )  -  ( A `  i ) ) ^ 2 ) )  <_  0  <->  ( ( K  <_  0  /\  0  <_  ( ( ( C `
 i )  -  ( A `  i ) ) ^ 2 ) )  \/  ( 0  <_  K  /\  (
( ( C `  i )  -  ( A `  i )
) ^ 2 )  <_  0 ) ) ) )
308, 28, 29syl2anc 643 . . . . . . . . 9  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  K  <_ 
0 ) )  -> 
( ( K  x.  ( ( ( C `
 i )  -  ( A `  i ) ) ^ 2 ) )  <_  0  <->  ( ( K  <_  0  /\  0  <_  ( ( ( C `
 i )  -  ( A `  i ) ) ^ 2 ) )  \/  ( 0  <_  K  /\  (
( ( C `  i )  -  ( A `  i )
) ^ 2 )  <_  0 ) ) ) )
3127, 30mpbird 224 . . . . . . . 8  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  K  <_ 
0 ) )  -> 
( K  x.  (
( ( C `  i )  -  ( A `  i )
) ^ 2 ) )  <_  0 )
3223, 31eqbrtrd 4225 . . . . . . 7  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  K  <_ 
0 ) )  -> 
( ( ( ( K  x.  ( ( C `  i )  -  ( A `  i ) ) )  +  ( A `  i ) )  -  ( A `  i ) )  x.  ( ( C `  i )  -  ( A `  i ) ) )  <_  0 )
337, 32sylan 458 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  /\  ( K  e.  RR  /\  K  <_  0 ) )  -> 
( ( ( ( K  x.  ( ( C `  i )  -  ( A `  i ) ) )  +  ( A `  i ) )  -  ( A `  i ) )  x.  ( ( C `  i )  -  ( A `  i ) ) )  <_  0 )
3433an32s 780 . . . . 5  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( K  e.  RR  /\  K  <_  0 ) )  /\  i  e.  ( 1 ... N ) )  ->  ( ( ( ( K  x.  (
( C `  i
)  -  ( A `
 i ) ) )  +  ( A `
 i ) )  -  ( A `  i ) )  x.  ( ( C `  i )  -  ( A `  i )
) )  <_  0
)
3534ralrimiva 2782 . . . 4  |-  ( ( ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( K  e.  RR  /\  K  <_  0 ) )  ->  A. i  e.  (
1 ... N ) ( ( ( ( K  x.  ( ( C `
 i )  -  ( A `  i ) ) )  +  ( A `  i ) )  -  ( A `
 i ) )  x.  ( ( C `
 i )  -  ( A `  i ) ) )  <_  0
)
3635expr 599 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  K  e.  RR )  ->  ( K  <_  0  ->  A. i  e.  ( 1 ... N
) ( ( ( ( K  x.  (
( C `  i
)  -  ( A `
 i ) ) )  +  ( A `
 i ) )  -  ( A `  i ) )  x.  ( ( C `  i )  -  ( A `  i )
) )  <_  0
) )
37 recn 9073 . . . . . . . . . . . . 13  |-  ( ( C `  i )  e.  RR  ->  ( C `  i )  e.  CC )
3837ad2antlr 708 . . . . . . . . . . . 12  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( C `  i )  e.  CC )
3917ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( A `  i )  e.  CC )
40 simprl 733 . . . . . . . . . . . . . 14  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  K  e.  RR )
4111adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( ( C `
 i )  -  ( A `  i ) )  e.  RR )
4240, 41remulcld 9109 . . . . . . . . . . . . 13  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( K  x.  ( ( C `  i )  -  ( A `  i )
) )  e.  RR )
4342recnd 9107 . . . . . . . . . . . 12  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( K  x.  ( ( C `  i )  -  ( A `  i )
) )  e.  CC )
4438, 39, 43sub32d 9436 . . . . . . . . . . 11  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( ( ( C `  i )  -  ( A `  i ) )  -  ( K  x.  (
( C `  i
)  -  ( A `
 i ) ) ) )  =  ( ( ( C `  i )  -  ( K  x.  ( ( C `  i )  -  ( A `  i ) ) ) )  -  ( A `
 i ) ) )
4540recnd 9107 . . . . . . . . . . . . 13  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  K  e.  CC )
4641recnd 9107 . . . . . . . . . . . . 13  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( ( C `
 i )  -  ( A `  i ) )  e.  CC )
47 ax-1cn 9041 . . . . . . . . . . . . . 14  |-  1  e.  CC
48 subdir 9461 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  CC  /\  K  e.  CC  /\  (
( C `  i
)  -  ( A `
 i ) )  e.  CC )  -> 
( ( 1  -  K )  x.  (
( C `  i
)  -  ( A `
 i ) ) )  =  ( ( 1  x.  ( ( C `  i )  -  ( A `  i ) ) )  -  ( K  x.  ( ( C `  i )  -  ( A `  i )
) ) ) )
4947, 48mp3an1 1266 . . . . . . . . . . . . 13  |-  ( ( K  e.  CC  /\  ( ( C `  i )  -  ( A `  i )
)  e.  CC )  ->  ( ( 1  -  K )  x.  ( ( C `  i )  -  ( A `  i )
) )  =  ( ( 1  x.  (
( C `  i
)  -  ( A `
 i ) ) )  -  ( K  x.  ( ( C `
 i )  -  ( A `  i ) ) ) ) )
5045, 46, 49syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( ( 1  -  K )  x.  ( ( C `  i )  -  ( A `  i )
) )  =  ( ( 1  x.  (
( C `  i
)  -  ( A `
 i ) ) )  -  ( K  x.  ( ( C `
 i )  -  ( A `  i ) ) ) ) )
5146mulid2d 9099 . . . . . . . . . . . . 13  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( 1  x.  ( ( C `  i )  -  ( A `  i )
) )  =  ( ( C `  i
)  -  ( A `
 i ) ) )
5251oveq1d 6089 . . . . . . . . . . . 12  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( ( 1  x.  ( ( C `
 i )  -  ( A `  i ) ) )  -  ( K  x.  ( ( C `  i )  -  ( A `  i ) ) ) )  =  ( ( ( C `  i
)  -  ( A `
 i ) )  -  ( K  x.  ( ( C `  i )  -  ( A `  i )
) ) ) )
5350, 52eqtr2d 2469 . . . . . . . . . . 11  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( ( ( C `  i )  -  ( A `  i ) )  -  ( K  x.  (
( C `  i
)  -  ( A `
 i ) ) ) )  =  ( ( 1  -  K
)  x.  ( ( C `  i )  -  ( A `  i ) ) ) )
5438, 43, 39subsub4d 9435 . . . . . . . . . . 11  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( ( ( C `  i )  -  ( K  x.  ( ( C `  i )  -  ( A `  i )
) ) )  -  ( A `  i ) )  =  ( ( C `  i )  -  ( ( K  x.  ( ( C `
 i )  -  ( A `  i ) ) )  +  ( A `  i ) ) ) )
5544, 53, 543eqtr3rd 2477 . . . . . . . . . 10  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( ( C `
 i )  -  ( ( K  x.  ( ( C `  i )  -  ( A `  i )
) )  +  ( A `  i ) ) )  =  ( ( 1  -  K
)  x.  ( ( C `  i )  -  ( A `  i ) ) ) )
5639, 39, 43sub32d 9436 . . . . . . . . . . 11  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( ( ( A `  i )  -  ( A `  i ) )  -  ( K  x.  (
( C `  i
)  -  ( A `
 i ) ) ) )  =  ( ( ( A `  i )  -  ( K  x.  ( ( C `  i )  -  ( A `  i ) ) ) )  -  ( A `
 i ) ) )
5739subidd 9392 . . . . . . . . . . . . 13  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( ( A `
 i )  -  ( A `  i ) )  =  0 )
5857oveq1d 6089 . . . . . . . . . . . 12  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( ( ( A `  i )  -  ( A `  i ) )  -  ( K  x.  (
( C `  i
)  -  ( A `
 i ) ) ) )  =  ( 0  -  ( K  x.  ( ( C `
 i )  -  ( A `  i ) ) ) ) )
59 df-neg 9287 . . . . . . . . . . . 12  |-  -u ( K  x.  ( ( C `  i )  -  ( A `  i ) ) )  =  ( 0  -  ( K  x.  (
( C `  i
)  -  ( A `
 i ) ) ) )
6058, 59syl6eqr 2486 . . . . . . . . . . 11  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( ( ( A `  i )  -  ( A `  i ) )  -  ( K  x.  (
( C `  i
)  -  ( A `
 i ) ) ) )  =  -u ( K  x.  (
( C `  i
)  -  ( A `
 i ) ) ) )
6139, 43, 39subsub4d 9435 . . . . . . . . . . 11  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( ( ( A `  i )  -  ( K  x.  ( ( C `  i )  -  ( A `  i )
) ) )  -  ( A `  i ) )  =  ( ( A `  i )  -  ( ( K  x.  ( ( C `
 i )  -  ( A `  i ) ) )  +  ( A `  i ) ) ) )
6256, 60, 613eqtr3rd 2477 . . . . . . . . . 10  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( ( A `
 i )  -  ( ( K  x.  ( ( C `  i )  -  ( A `  i )
) )  +  ( A `  i ) ) )  =  -u ( K  x.  (
( C `  i
)  -  ( A `
 i ) ) ) )
6355, 62oveq12d 6092 . . . . . . . . 9  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( ( ( C `  i )  -  ( ( K  x.  ( ( C `
 i )  -  ( A `  i ) ) )  +  ( A `  i ) ) )  x.  (
( A `  i
)  -  ( ( K  x.  ( ( C `  i )  -  ( A `  i ) ) )  +  ( A `  i ) ) ) )  =  ( ( ( 1  -  K
)  x.  ( ( C `  i )  -  ( A `  i ) ) )  x.  -u ( K  x.  ( ( C `  i )  -  ( A `  i )
) ) ) )
64 1re 9083 . . . . . . . . . . . . . 14  |-  1  e.  RR
65 resubcl 9358 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  RR  /\  K  e.  RR )  ->  ( 1  -  K
)  e.  RR )
6664, 65mpan 652 . . . . . . . . . . . . 13  |-  ( K  e.  RR  ->  (
1  -  K )  e.  RR )
6766ad2antrl 709 . . . . . . . . . . . 12  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( 1  -  K )  e.  RR )
6867, 41remulcld 9109 . . . . . . . . . . 11  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( ( 1  -  K )  x.  ( ( C `  i )  -  ( A `  i )
) )  e.  RR )
6968recnd 9107 . . . . . . . . . 10  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( ( 1  -  K )  x.  ( ( C `  i )  -  ( A `  i )
) )  e.  CC )
7069, 43mulneg2d 9480 . . . . . . . . 9  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( ( ( 1  -  K )  x.  ( ( C `
 i )  -  ( A `  i ) ) )  x.  -u ( K  x.  ( ( C `  i )  -  ( A `  i ) ) ) )  =  -u (
( ( 1  -  K )  x.  (
( C `  i
)  -  ( A `
 i ) ) )  x.  ( K  x.  ( ( C `
 i )  -  ( A `  i ) ) ) ) )
7167recnd 9107 . . . . . . . . . . 11  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( 1  -  K )  e.  CC )
7271, 46, 45, 46mul4d 9271 . . . . . . . . . 10  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( ( ( 1  -  K )  x.  ( ( C `
 i )  -  ( A `  i ) ) )  x.  ( K  x.  ( ( C `  i )  -  ( A `  i ) ) ) )  =  ( ( ( 1  -  K
)  x.  K )  x.  ( ( ( C `  i )  -  ( A `  i ) )  x.  ( ( C `  i )  -  ( A `  i )
) ) ) )
7372negeqd 9293 . . . . . . . . 9  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  -u ( ( ( 1  -  K )  x.  ( ( C `
 i )  -  ( A `  i ) ) )  x.  ( K  x.  ( ( C `  i )  -  ( A `  i ) ) ) )  =  -u (
( ( 1  -  K )  x.  K
)  x.  ( ( ( C `  i
)  -  ( A `
 i ) )  x.  ( ( C `
 i )  -  ( A `  i ) ) ) ) )
7463, 70, 733eqtrd 2472 . . . . . . . 8  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( ( ( C `  i )  -  ( ( K  x.  ( ( C `
 i )  -  ( A `  i ) ) )  +  ( A `  i ) ) )  x.  (
( A `  i
)  -  ( ( K  x.  ( ( C `  i )  -  ( A `  i ) ) )  +  ( A `  i ) ) ) )  =  -u (
( ( 1  -  K )  x.  K
)  x.  ( ( ( C `  i
)  -  ( A `
 i ) )  x.  ( ( C `
 i )  -  ( A `  i ) ) ) ) )
7567, 40remulcld 9109 . . . . . . . . . . 11  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( ( 1  -  K )  x.  K )  e.  RR )
7641resqcld 11542 . . . . . . . . . . 11  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( ( ( C `  i )  -  ( A `  i ) ) ^
2 )  e.  RR )
77 simpl 444 . . . . . . . . . . . . . 14  |-  ( ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) )  ->  K  e.  RR )
7864, 77, 65sylancr 645 . . . . . . . . . . . . 13  |-  ( ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) )  ->  ( 1  -  K )  e.  RR )
79 subge0 9534 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  RR  /\  K  e.  RR )  ->  ( 0  <_  (
1  -  K )  <-> 
K  <_  1 ) )
8064, 79mpan 652 . . . . . . . . . . . . . . 15  |-  ( K  e.  RR  ->  (
0  <_  ( 1  -  K )  <->  K  <_  1 ) )
8180biimpar 472 . . . . . . . . . . . . . 14  |-  ( ( K  e.  RR  /\  K  <_  1 )  -> 
0  <_  ( 1  -  K ) )
8281adantrl 697 . . . . . . . . . . . . 13  |-  ( ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) )  ->  0  <_  ( 1  -  K ) )
83 simprl 733 . . . . . . . . . . . . 13  |-  ( ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) )  ->  0  <_  K )
8478, 77, 82, 83mulge0d 9596 . . . . . . . . . . . 12  |-  ( ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) )  ->  0  <_  ( ( 1  -  K
)  x.  K ) )
8584adantl 453 . . . . . . . . . . 11  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  0  <_  (
( 1  -  K
)  x.  K ) )
8641sqge0d 11543 . . . . . . . . . . 11  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  0  <_  (
( ( C `  i )  -  ( A `  i )
) ^ 2 ) )
8775, 76, 85, 86mulge0d 9596 . . . . . . . . . 10  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  0  <_  (
( ( 1  -  K )  x.  K
)  x.  ( ( ( C `  i
)  -  ( A `
 i ) ) ^ 2 ) ) )
8846sqvald 11513 . . . . . . . . . . 11  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( ( ( C `  i )  -  ( A `  i ) ) ^
2 )  =  ( ( ( C `  i )  -  ( A `  i )
)  x.  ( ( C `  i )  -  ( A `  i ) ) ) )
8988oveq2d 6090 . . . . . . . . . 10  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( ( ( 1  -  K )  x.  K )  x.  ( ( ( C `
 i )  -  ( A `  i ) ) ^ 2 ) )  =  ( ( ( 1  -  K
)  x.  K )  x.  ( ( ( C `  i )  -  ( A `  i ) )  x.  ( ( C `  i )  -  ( A `  i )
) ) ) )
9087, 89breqtrd 4229 . . . . . . . . 9  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  0  <_  (
( ( 1  -  K )  x.  K
)  x.  ( ( ( C `  i
)  -  ( A `
 i ) )  x.  ( ( C `
 i )  -  ( A `  i ) ) ) ) )
9141, 41remulcld 9109 . . . . . . . . . . 11  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( ( ( C `  i )  -  ( A `  i ) )  x.  ( ( C `  i )  -  ( A `  i )
) )  e.  RR )
9275, 91remulcld 9109 . . . . . . . . . 10  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( ( ( 1  -  K )  x.  K )  x.  ( ( ( C `
 i )  -  ( A `  i ) )  x.  ( ( C `  i )  -  ( A `  i ) ) ) )  e.  RR )
9392le0neg2d 9592 . . . . . . . . 9  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( 0  <_ 
( ( ( 1  -  K )  x.  K )  x.  (
( ( C `  i )  -  ( A `  i )
)  x.  ( ( C `  i )  -  ( A `  i ) ) ) )  <->  -u ( ( ( 1  -  K )  x.  K )  x.  ( ( ( C `
 i )  -  ( A `  i ) )  x.  ( ( C `  i )  -  ( A `  i ) ) ) )  <_  0 ) )
9490, 93mpbid 202 . . . . . . . 8  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  -u ( ( ( 1  -  K )  x.  K )  x.  ( ( ( C `
 i )  -  ( A `  i ) )  x.  ( ( C `  i )  -  ( A `  i ) ) ) )  <_  0 )
9574, 94eqbrtrd 4225 . . . . . . 7  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  ( 0  <_  K  /\  K  <_  1 ) ) )  ->  ( ( ( C `  i )  -  ( ( K  x.  ( ( C `
 i )  -  ( A `  i ) ) )  +  ( A `  i ) ) )  x.  (
( A `  i
)  -  ( ( K  x.  ( ( C `  i )  -  ( A `  i ) ) )  +  ( A `  i ) ) ) )  <_  0 )
967, 95sylan 458 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  /\  ( K  e.  RR  /\  (
0  <_  K  /\  K  <_  1 ) ) )  ->  ( (
( C `  i
)  -  ( ( K  x.  ( ( C `  i )  -  ( A `  i ) ) )  +  ( A `  i ) ) )  x.  ( ( A `
 i )  -  ( ( K  x.  ( ( C `  i )  -  ( A `  i )
) )  +  ( A `  i ) ) ) )  <_ 
0 )
9796an32s 780 . . . . 5  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( K  e.  RR  /\  (
0  <_  K  /\  K  <_  1 ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( C `  i )  -  (
( K  x.  (
( C `  i
)  -  ( A `
 i ) ) )  +  ( A `
 i ) ) )  x.  ( ( A `  i )  -  ( ( K  x.  ( ( C `
 i )  -  ( A `  i ) ) )  +  ( A `  i ) ) ) )  <_ 
0 )
9897ralrimiva 2782 . . . 4  |-  ( ( ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( K  e.  RR  /\  (
0  <_  K  /\  K  <_  1 ) ) )  ->  A. i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( ( K  x.  ( ( C `
 i )  -  ( A `  i ) ) )  +  ( A `  i ) ) )  x.  (
( A `  i
)  -  ( ( K  x.  ( ( C `  i )  -  ( A `  i ) ) )  +  ( A `  i ) ) ) )  <_  0 )
9998expr 599 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  K  e.  RR )  ->  (
( 0  <_  K  /\  K  <_  1 )  ->  A. i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( ( K  x.  ( ( C `  i )  -  ( A `  i )
) )  +  ( A `  i ) ) )  x.  (
( A `  i
)  -  ( ( K  x.  ( ( C `  i )  -  ( A `  i ) ) )  +  ( A `  i ) ) ) )  <_  0 ) )
10037ad2antlr 708 . . . . . . . . . . 11  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
( C `  i
)  e.  CC )
10117ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
( A `  i
)  e.  CC )
102100, 101negsubdi2d 9420 . . . . . . . . . 10  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  ->  -u ( ( C `  i )  -  ( A `  i )
)  =  ( ( A `  i )  -  ( C `  i ) ) )
103102oveq1d 6089 . . . . . . . . 9  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
( -u ( ( C `
 i )  -  ( A `  i ) )  x.  ( ( K  -  1 )  x.  ( ( C `
 i )  -  ( A `  i ) ) ) )  =  ( ( ( A `
 i )  -  ( C `  i ) )  x.  ( ( K  -  1 )  x.  ( ( C `
 i )  -  ( A `  i ) ) ) ) )
104 simplr 732 . . . . . . . . . . . . 13  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
( C `  i
)  e.  RR )
105 simpll 731 . . . . . . . . . . . . 13  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
( A `  i
)  e.  RR )
106104, 105, 10syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
( ( C `  i )  -  ( A `  i )
)  e.  RR )
107106recnd 9107 . . . . . . . . . . 11  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
( ( C `  i )  -  ( A `  i )
)  e.  CC )
108 peano2rem 9360 . . . . . . . . . . . . . 14  |-  ( K  e.  RR  ->  ( K  -  1 )  e.  RR )
109108ad2antrl 709 . . . . . . . . . . . . 13  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
( K  -  1 )  e.  RR )
110109, 106remulcld 9109 . . . . . . . . . . . 12  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
( ( K  - 
1 )  x.  (
( C `  i
)  -  ( A `
 i ) ) )  e.  RR )
111110recnd 9107 . . . . . . . . . . 11  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
( ( K  - 
1 )  x.  (
( C `  i
)  -  ( A `
 i ) ) )  e.  CC )
112107, 111mulneg1d 9479 . . . . . . . . . 10  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
( -u ( ( C `
 i )  -  ( A `  i ) )  x.  ( ( K  -  1 )  x.  ( ( C `
 i )  -  ( A `  i ) ) ) )  = 
-u ( ( ( C `  i )  -  ( A `  i ) )  x.  ( ( K  - 
1 )  x.  (
( C `  i
)  -  ( A `
 i ) ) ) ) )
113109recnd 9107 . . . . . . . . . . . . 13  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
( K  -  1 )  e.  CC )
114107, 113, 107mul12d 9268 . . . . . . . . . . . 12  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
( ( ( C `
 i )  -  ( A `  i ) )  x.  ( ( K  -  1 )  x.  ( ( C `
 i )  -  ( A `  i ) ) ) )  =  ( ( K  - 
1 )  x.  (
( ( C `  i )  -  ( A `  i )
)  x.  ( ( C `  i )  -  ( A `  i ) ) ) ) )
115107sqvald 11513 . . . . . . . . . . . . 13  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
( ( ( C `
 i )  -  ( A `  i ) ) ^ 2 )  =  ( ( ( C `  i )  -  ( A `  i ) )  x.  ( ( C `  i )  -  ( A `  i )
) ) )
116115oveq2d 6090 . . . . . . . . . . . 12  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
( ( K  - 
1 )  x.  (
( ( C `  i )  -  ( A `  i )
) ^ 2 ) )  =  ( ( K  -  1 )  x.  ( ( ( C `  i )  -  ( A `  i ) )  x.  ( ( C `  i )  -  ( A `  i )
) ) ) )
117114, 116eqtr4d 2471 . . . . . . . . . . 11  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
( ( ( C `
 i )  -  ( A `  i ) )  x.  ( ( K  -  1 )  x.  ( ( C `
 i )  -  ( A `  i ) ) ) )  =  ( ( K  - 
1 )  x.  (
( ( C `  i )  -  ( A `  i )
) ^ 2 ) ) )
118117negeqd 9293 . . . . . . . . . 10  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  ->  -u ( ( ( C `
 i )  -  ( A `  i ) )  x.  ( ( K  -  1 )  x.  ( ( C `
 i )  -  ( A `  i ) ) ) )  = 
-u ( ( K  -  1 )  x.  ( ( ( C `
 i )  -  ( A `  i ) ) ^ 2 ) ) )
119112, 118eqtrd 2468 . . . . . . . . 9  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
( -u ( ( C `
 i )  -  ( A `  i ) )  x.  ( ( K  -  1 )  x.  ( ( C `
 i )  -  ( A `  i ) ) ) )  = 
-u ( ( K  -  1 )  x.  ( ( ( C `
 i )  -  ( A `  i ) ) ^ 2 ) ) )
120 simprl 733 . . . . . . . . . . . . 13  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  ->  K  e.  RR )
121120recnd 9107 . . . . . . . . . . . 12  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  ->  K  e.  CC )
122 subdir 9461 . . . . . . . . . . . . 13  |-  ( ( K  e.  CC  /\  1  e.  CC  /\  (
( C `  i
)  -  ( A `
 i ) )  e.  CC )  -> 
( ( K  - 
1 )  x.  (
( C `  i
)  -  ( A `
 i ) ) )  =  ( ( K  x.  ( ( C `  i )  -  ( A `  i ) ) )  -  ( 1  x.  ( ( C `  i )  -  ( A `  i )
) ) ) )
12347, 122mp3an2 1267 . . . . . . . . . . . 12  |-  ( ( K  e.  CC  /\  ( ( C `  i )  -  ( A `  i )
)  e.  CC )  ->  ( ( K  -  1 )  x.  ( ( C `  i )  -  ( A `  i )
) )  =  ( ( K  x.  (
( C `  i
)  -  ( A `
 i ) ) )  -  ( 1  x.  ( ( C `
 i )  -  ( A `  i ) ) ) ) )
124121, 107, 123syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
( ( K  - 
1 )  x.  (
( C `  i
)  -  ( A `
 i ) ) )  =  ( ( K  x.  ( ( C `  i )  -  ( A `  i ) ) )  -  ( 1  x.  ( ( C `  i )  -  ( A `  i )
) ) ) )
125107mulid2d 9099 . . . . . . . . . . . 12  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
( 1  x.  (
( C `  i
)  -  ( A `
 i ) ) )  =  ( ( C `  i )  -  ( A `  i ) ) )
126125oveq2d 6090 . . . . . . . . . . 11  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
( ( K  x.  ( ( C `  i )  -  ( A `  i )
) )  -  (
1  x.  ( ( C `  i )  -  ( A `  i ) ) ) )  =  ( ( K  x.  ( ( C `  i )  -  ( A `  i ) ) )  -  ( ( C `
 i )  -  ( A `  i ) ) ) )
127120, 106remulcld 9109 . . . . . . . . . . . . 13  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
( K  x.  (
( C `  i
)  -  ( A `
 i ) ) )  e.  RR )
128127recnd 9107 . . . . . . . . . . . 12  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
( K  x.  (
( C `  i
)  -  ( A `
 i ) ) )  e.  CC )
129128, 100, 101subsub3d 9434 . . . . . . . . . . 11  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
( ( K  x.  ( ( C `  i )  -  ( A `  i )
) )  -  (
( C `  i
)  -  ( A `
 i ) ) )  =  ( ( ( K  x.  (
( C `  i
)  -  ( A `
 i ) ) )  +  ( A `
 i ) )  -  ( C `  i ) ) )
130124, 126, 1293eqtrd 2472 . . . . . . . . . 10  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
( ( K  - 
1 )  x.  (
( C `  i
)  -  ( A `
 i ) ) )  =  ( ( ( K  x.  (
( C `  i
)  -  ( A `
 i ) ) )  +  ( A `
 i ) )  -  ( C `  i ) ) )
131130oveq2d 6090 . . . . . . . . 9  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
( ( ( A `
 i )  -  ( C `  i ) )  x.  ( ( K  -  1 )  x.  ( ( C `
 i )  -  ( A `  i ) ) ) )  =  ( ( ( A `
 i )  -  ( C `  i ) )  x.  ( ( ( K  x.  (
( C `  i
)  -  ( A `
 i ) ) )  +  ( A `
 i ) )  -  ( C `  i ) ) ) )
132103, 119, 1313eqtr3rd 2477 . . . . . . . 8  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
( ( ( A `
 i )  -  ( C `  i ) )  x.  ( ( ( K  x.  (
( C `  i
)  -  ( A `
 i ) ) )  +  ( A `
 i ) )  -  ( C `  i ) ) )  =  -u ( ( K  -  1 )  x.  ( ( ( C `
 i )  -  ( A `  i ) ) ^ 2 ) ) )
133106resqcld 11542 . . . . . . . . . 10  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
( ( ( C `
 i )  -  ( A `  i ) ) ^ 2 )  e.  RR )
134 simprr 734 . . . . . . . . . . 11  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
1  <_  K )
135 subge0 9534 . . . . . . . . . . . . 13  |-  ( ( K  e.  RR  /\  1  e.  RR )  ->  ( 0  <_  ( K  -  1 )  <->  1  <_  K )
)
13664, 135mpan2 653 . . . . . . . . . . . 12  |-  ( K  e.  RR  ->  (
0  <_  ( K  -  1 )  <->  1  <_  K ) )
137136ad2antrl 709 . . . . . . . . . . 11  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
( 0  <_  ( K  -  1 )  <->  1  <_  K )
)
138134, 137mpbird 224 . . . . . . . . . 10  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
0  <_  ( K  -  1 ) )
139106sqge0d 11543 . . . . . . . . . 10  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
0  <_  ( (
( C `  i
)  -  ( A `
 i ) ) ^ 2 ) )
140109, 133, 138, 139mulge0d 9596 . . . . . . . . 9  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
0  <_  ( ( K  -  1 )  x.  ( ( ( C `  i )  -  ( A `  i ) ) ^
2 ) ) )
141109, 133remulcld 9109 . . . . . . . . . 10  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
( ( K  - 
1 )  x.  (
( ( C `  i )  -  ( A `  i )
) ^ 2 ) )  e.  RR )
142141le0neg2d 9592 . . . . . . . . 9  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
( 0  <_  (
( K  -  1 )  x.  ( ( ( C `  i
)  -  ( A `
 i ) ) ^ 2 ) )  <->  -u ( ( K  - 
1 )  x.  (
( ( C `  i )  -  ( A `  i )
) ^ 2 ) )  <_  0 ) )
143140, 142mpbid 202 . . . . . . . 8  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  ->  -u ( ( K  - 
1 )  x.  (
( ( C `  i )  -  ( A `  i )
) ^ 2 ) )  <_  0 )
144132, 143eqbrtrd 4225 . . . . . . 7  |-  ( ( ( ( A `  i )  e.  RR  /\  ( C `  i
)  e.  RR )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
( ( ( A `
 i )  -  ( C `  i ) )  x.  ( ( ( K  x.  (
( C `  i
)  -  ( A `
 i ) ) )  +  ( A `
 i ) )  -  ( C `  i ) ) )  <_  0 )
1457, 144sylan 458 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  /\  ( K  e.  RR  /\  1  <_  K ) )  -> 
( ( ( A `
 i )  -  ( C `  i ) )  x.  ( ( ( K  x.  (
( C `  i
)  -  ( A `
 i ) ) )  +  ( A `
 i ) )  -  ( C `  i ) ) )  <_  0 )
146145an32s 780 . . . . 5  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( K  e.  RR  /\  1  <_  K ) )  /\  i  e.  ( 1 ... N ) )  ->  ( ( ( A `  i )  -  ( C `  i ) )  x.  ( ( ( K  x.  ( ( C `
 i )  -  ( A `  i ) ) )  +  ( A `  i ) )  -  ( C `
 i ) ) )  <_  0 )
147146ralrimiva 2782 . . . 4  |-  ( ( ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( K  e.  RR  /\  1  <_  K ) )  ->  A. i  e.  (
1 ... N ) ( ( ( A `  i )  -  ( C `  i )
)  x.  ( ( ( K  x.  (
( C `  i
)  -  ( A `
 i ) ) )  +  ( A `
 i ) )  -  ( C `  i ) ) )  <_  0 )
148147expr 599 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  K  e.  RR )  ->  (
1  <_  K  ->  A. i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( C `  i )
)  x.  ( ( ( K  x.  (
( C `  i
)  -  ( A `
 i ) ) )  +  ( A `
 i ) )  -  ( C `  i ) ) )  <_  0 ) )
14936, 99, 1483orim123d 1262 . 2  |-  ( ( ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  K  e.  RR )  ->  (
( K  <_  0  \/  ( 0  <_  K  /\  K  <_  1 )  \/  1  <_  K
)  ->  ( A. i  e.  ( 1 ... N ) ( ( ( ( K  x.  ( ( C `
 i )  -  ( A `  i ) ) )  +  ( A `  i ) )  -  ( A `
 i ) )  x.  ( ( C `
 i )  -  ( A `  i ) ) )  <_  0  \/  A. i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( ( K  x.  ( ( C `  i )  -  ( A `  i )
) )  +  ( A `  i ) ) )  x.  (
( A `  i
)  -  ( ( K  x.  ( ( C `  i )  -  ( A `  i ) ) )  +  ( A `  i ) ) ) )  <_  0  \/  A. i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( C `  i )
)  x.  ( ( ( K  x.  (
( C `  i
)  -  ( A `
 i ) ) )  +  ( A `
 i ) )  -  ( C `  i ) ) )  <_  0 ) ) )
1502, 149mpd 15 1  |-  ( ( ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  K  e.  RR )  ->  ( A. i  e.  (
1 ... N ) ( ( ( ( K  x.  ( ( C `
 i )  -  ( A `  i ) ) )  +  ( A `  i ) )  -  ( A `
 i ) )  x.  ( ( C `
 i )  -  ( A `  i ) ) )  <_  0  \/  A. i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( ( K  x.  ( ( C `  i )  -  ( A `  i )
) )  +  ( A `  i ) ) )  x.  (
( A `  i
)  -  ( ( K  x.  ( ( C `  i )  -  ( A `  i ) ) )  +  ( A `  i ) ) ) )  <_  0  \/  A. i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( C `  i )
)  x.  ( ( ( K  x.  (
( C `  i
)  -  ( A `
 i ) ) )  +  ( A `
 i ) )  -  ( C `  i ) ) )  <_  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    \/ w3o 935    = wceq 1652    e. wcel 1725   A.wral 2698   class class class wbr 4205   ` cfv 5447  (class class class)co 6074   CCcc 8981   RRcr 8982   0cc0 8983   1c1 8984    + caddc 8986    x. cmul 8988    <_ cle 9114    - cmin 9284   -ucneg 9285   2c2 10042   ...cfz 11036   ^cexp 11375   EEcee 25820
This theorem is referenced by:  colinearalg  25842
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694  ax-cnex 9039  ax-resscn 9040  ax-1cn 9041  ax-icn 9042  ax-addcl 9043  ax-addrcl 9044  ax-mulcl 9045  ax-mulrcl 9046  ax-mulcom 9047  ax-addass 9048  ax-mulass 9049  ax-distr 9050  ax-i2m1 9051  ax-1ne0 9052  ax-1rid 9053  ax-rnegex 9054  ax-rrecex 9055  ax-cnre 9056  ax-pre-lttri 9057  ax-pre-lttrn 9058  ax-pre-ltadd 9059  ax-pre-mulgt0 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2703  df-rex 2704  df-reu 2705  df-rmo 2706  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-pss 3329  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-tp 3815  df-op 3816  df-uni 4009  df-iun 4088  df-br 4206  df-opab 4260  df-mpt 4261  df-tr 4296  df-eprel 4487  df-id 4491  df-po 4496  df-so 4497  df-fr 4534  df-we 4536  df-ord 4577  df-on 4578  df-lim 4579  df-suc 4580  df-om 4839  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-ov 6077  df-oprab 6078  df-mpt2 6079  df-2nd 6343  df-riota 6542  df-recs 6626  df-rdg 6661  df-er 6898  df-map 7013  df-en 7103  df-dom 7104  df-sdom 7105  df-pnf 9115  df-mnf 9116  df-xr 9117  df-ltxr 9118  df-le 9119  df-sub 9286  df-neg 9287  df-div 9671  df-nn 9994  df-2 10051  df-n0 10215  df-z 10276  df-uz 10482  df-seq 11317  df-exp 11376  df-ee 25823
  Copyright terms: Public domain W3C validator