Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  colineardim1 Structured version   Unicode version

Theorem colineardim1 25995
Description: If  A is colinear with  B and  C, then 
A is in the same space as  B. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
colineardim1  |-  ( ( N  e.  NN  /\  ( A  e.  V  /\  B  e.  ( EE `  N )  /\  C  e.  W )
)  ->  ( A  Colinear  <. B ,  C >.  ->  A  e.  ( EE `  N ) ) )

Proof of Theorem colineardim1
Dummy variables  a 
b  c  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-colinear 25975 . . 3  |-  Colinear  =  `' { <. <. b ,  c
>. ,  a >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) }
21breqi 4218 . 2  |-  ( A 
Colinear 
<. B ,  C >.  <->  A `' { <. <. b ,  c
>. ,  a >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) } <. B ,  C >. )
3 simpr1 963 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  V  /\  B  e.  ( EE `  N )  /\  C  e.  W )
)  ->  A  e.  V )
4 opex 4427 . . . 4  |-  <. B ,  C >.  e.  _V
5 brcnvg 5053 . . . 4  |-  ( ( A  e.  V  /\  <. B ,  C >.  e. 
_V )  ->  ( A `' { <. <. b ,  c
>. ,  a >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) } <. B ,  C >.  <->  <. B ,  C >. { <. <. b ,  c >. ,  a
>.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n
)  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) } A
) )
63, 4, 5sylancl 644 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  V  /\  B  e.  ( EE `  N )  /\  C  e.  W )
)  ->  ( A `' { <. <. b ,  c
>. ,  a >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) } <. B ,  C >.  <->  <. B ,  C >. { <. <. b ,  c >. ,  a
>.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n
)  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) } A
) )
7 df-br 4213 . . . 4  |-  ( <. B ,  C >. {
<. <. b ,  c
>. ,  a >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) } A  <->  <. <. B ,  C >. ,  A >.  e.  { <. <.
b ,  c >. ,  a >.  |  E. n  e.  NN  (
( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) } )
8 eleq1 2496 . . . . . . . . . . 11  |-  ( b  =  B  ->  (
b  e.  ( EE
`  n )  <->  B  e.  ( EE `  n ) ) )
983anbi2d 1259 . . . . . . . . . 10  |-  ( b  =  B  ->  (
( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  <->  ( a  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) ) ) )
10 opeq1 3984 . . . . . . . . . . . 12  |-  ( b  =  B  ->  <. b ,  c >.  =  <. B ,  c >. )
1110breq2d 4224 . . . . . . . . . . 11  |-  ( b  =  B  ->  (
a  Btwn  <. b ,  c >.  <->  a  Btwn  <. B , 
c >. ) )
12 breq1 4215 . . . . . . . . . . 11  |-  ( b  =  B  ->  (
b  Btwn  <. c ,  a >.  <->  B  Btwn  <. c ,  a >. )
)
13 opeq2 3985 . . . . . . . . . . . 12  |-  ( b  =  B  ->  <. a ,  b >.  =  <. a ,  B >. )
1413breq2d 4224 . . . . . . . . . . 11  |-  ( b  =  B  ->  (
c  Btwn  <. a ,  b >.  <->  c  Btwn  <. a ,  B >. ) )
1511, 12, 143orbi123d 1253 . . . . . . . . . 10  |-  ( b  =  B  ->  (
( a  Btwn  <. b ,  c >.  \/  b  Btwn  <. c ,  a
>.  \/  c  Btwn  <. a ,  b >. )  <->  ( a  Btwn  <. B , 
c >.  \/  B  Btwn  <.
c ,  a >.  \/  c  Btwn  <. a ,  B >. ) ) )
169, 15anbi12d 692 . . . . . . . . 9  |-  ( b  =  B  ->  (
( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) )  <->  ( (
a  e.  ( EE
`  n )  /\  B  e.  ( EE `  n )  /\  c  e.  ( EE `  n
) )  /\  (
a  Btwn  <. B , 
c >.  \/  B  Btwn  <.
c ,  a >.  \/  c  Btwn  <. a ,  B >. ) ) ) )
1716rexbidv 2726 . . . . . . . 8  |-  ( b  =  B  ->  ( E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) )  <->  E. n  e.  NN  ( ( a  e.  ( EE `  n )  /\  B  e.  ( EE `  n
)  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. B ,  c
>.  \/  B  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  B >. ) ) ) )
18 eleq1 2496 . . . . . . . . . . 11  |-  ( c  =  C  ->  (
c  e.  ( EE
`  n )  <->  C  e.  ( EE `  n ) ) )
19183anbi3d 1260 . . . . . . . . . 10  |-  ( c  =  C  ->  (
( a  e.  ( EE `  n )  /\  B  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  <->  ( a  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n ) ) ) )
20 opeq2 3985 . . . . . . . . . . . 12  |-  ( c  =  C  ->  <. B , 
c >.  =  <. B ,  C >. )
2120breq2d 4224 . . . . . . . . . . 11  |-  ( c  =  C  ->  (
a  Btwn  <. B , 
c >. 
<->  a  Btwn  <. B ,  C >. ) )
22 opeq1 3984 . . . . . . . . . . . 12  |-  ( c  =  C  ->  <. c ,  a >.  =  <. C ,  a >. )
2322breq2d 4224 . . . . . . . . . . 11  |-  ( c  =  C  ->  ( B  Btwn  <. c ,  a
>. 
<->  B  Btwn  <. C , 
a >. ) )
24 breq1 4215 . . . . . . . . . . 11  |-  ( c  =  C  ->  (
c  Btwn  <. a ,  B >.  <->  C  Btwn  <. a ,  B >. ) )
2521, 23, 243orbi123d 1253 . . . . . . . . . 10  |-  ( c  =  C  ->  (
( a  Btwn  <. B , 
c >.  \/  B  Btwn  <.
c ,  a >.  \/  c  Btwn  <. a ,  B >. )  <->  ( a  Btwn  <. B ,  C >.  \/  B  Btwn  <. C , 
a >.  \/  C  Btwn  <.
a ,  B >. ) ) )
2619, 25anbi12d 692 . . . . . . . . 9  |-  ( c  =  C  ->  (
( ( a  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. B ,  c
>.  \/  B  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  B >. ) )  <->  ( (
a  e.  ( EE
`  n )  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n
) )  /\  (
a  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  a >.  \/  C  Btwn  <. a ,  B >. ) ) ) )
2726rexbidv 2726 . . . . . . . 8  |-  ( c  =  C  ->  ( E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. B ,  c
>.  \/  B  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  B >. ) )  <->  E. n  e.  NN  ( ( a  e.  ( EE `  n )  /\  B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C , 
a >.  \/  C  Btwn  <.
a ,  B >. ) ) ) )
28 eleq1 2496 . . . . . . . . . . 11  |-  ( a  =  A  ->  (
a  e.  ( EE
`  n )  <->  A  e.  ( EE `  n ) ) )
29283anbi1d 1258 . . . . . . . . . 10  |-  ( a  =  A  ->  (
( a  e.  ( EE `  n )  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n ) )  <->  ( A  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n ) ) ) )
30 breq1 4215 . . . . . . . . . . 11  |-  ( a  =  A  ->  (
a  Btwn  <. B ,  C >. 
<->  A  Btwn  <. B ,  C >. ) )
31 opeq2 3985 . . . . . . . . . . . 12  |-  ( a  =  A  ->  <. C , 
a >.  =  <. C ,  A >. )
3231breq2d 4224 . . . . . . . . . . 11  |-  ( a  =  A  ->  ( B  Btwn  <. C ,  a
>. 
<->  B  Btwn  <. C ,  A >. ) )
33 opeq1 3984 . . . . . . . . . . . 12  |-  ( a  =  A  ->  <. a ,  B >.  =  <. A ,  B >. )
3433breq2d 4224 . . . . . . . . . . 11  |-  ( a  =  A  ->  ( C  Btwn  <. a ,  B >.  <-> 
C  Btwn  <. A ,  B >. ) )
3530, 32, 343orbi123d 1253 . . . . . . . . . 10  |-  ( a  =  A  ->  (
( a  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  a >.  \/  C  Btwn  <. a ,  B >. )  <->  ( A  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) ) )
3629, 35anbi12d 692 . . . . . . . . 9  |-  ( a  =  A  ->  (
( ( a  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C , 
a >.  \/  C  Btwn  <.
a ,  B >. ) )  <->  ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n ) )  /\  ( A 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) ) ) )
3736rexbidv 2726 . . . . . . . 8  |-  ( a  =  A  ->  ( E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C , 
a >.  \/  C  Btwn  <.
a ,  B >. ) )  <->  E. n  e.  NN  ( ( A  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n ) )  /\  ( A 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) ) ) )
3817, 27, 37eloprabg 6161 . . . . . . 7  |-  ( ( B  e.  ( EE
`  N )  /\  C  e.  W  /\  A  e.  V )  ->  ( <. <. B ,  C >. ,  A >.  e.  { <. <. b ,  c
>. ,  a >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) }  <->  E. n  e.  NN  ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n ) )  /\  ( A 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) ) ) )
39383comr 1161 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  ( EE `  N )  /\  C  e.  W )  ->  ( <. <. B ,  C >. ,  A >.  e.  { <. <. b ,  c
>. ,  a >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) }  <->  E. n  e.  NN  ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n ) )  /\  ( A 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) ) ) )
4039adantl 453 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  V  /\  B  e.  ( EE `  N )  /\  C  e.  W )
)  ->  ( <. <. B ,  C >. ,  A >.  e.  { <. <.
b ,  c >. ,  a >.  |  E. n  e.  NN  (
( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) }  <->  E. n  e.  NN  ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n ) )  /\  ( A 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) ) ) )
41 simpl 444 . . . . . . 7  |-  ( ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n ) )  /\  ( A 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) )  ->  ( A  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n ) ) )
42 simp2 958 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  B  e.  ( EE `  N )  /\  C  e.  W )  ->  B  e.  ( EE `  N
) )
4342anim2i 553 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A  e.  V  /\  B  e.  ( EE `  N )  /\  C  e.  W )
)  ->  ( N  e.  NN  /\  B  e.  ( EE `  N
) ) )
44 3simpa 954 . . . . . . . . . 10  |-  ( ( A  e.  ( EE
`  n )  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n
) )  ->  ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
) ) )
4544anim2i 553 . . . . . . . . 9  |-  ( ( n  e.  NN  /\  ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n
) ) )  -> 
( n  e.  NN  /\  ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n ) ) ) )
46 axdimuniq 25852 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  B  e.  ( EE
`  N ) )  /\  ( n  e.  NN  /\  B  e.  ( EE `  n
) ) )  ->  N  =  n )
4746adantrrl 705 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  B  e.  ( EE
`  N ) )  /\  ( n  e.  NN  /\  ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
) ) ) )  ->  N  =  n )
48 simprrl 741 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  B  e.  ( EE
`  N ) )  /\  ( n  e.  NN  /\  ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
) ) ) )  ->  A  e.  ( EE `  n ) )
49 fveq2 5728 . . . . . . . . . . . 12  |-  ( N  =  n  ->  ( EE `  N )  =  ( EE `  n
) )
5049eleq2d 2503 . . . . . . . . . . 11  |-  ( N  =  n  ->  ( A  e.  ( EE `  N )  <->  A  e.  ( EE `  n ) ) )
5148, 50syl5ibrcom 214 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  B  e.  ( EE
`  N ) )  /\  ( n  e.  NN  /\  ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
) ) ) )  ->  ( N  =  n  ->  A  e.  ( EE `  N ) ) )
5247, 51mpd 15 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  B  e.  ( EE
`  N ) )  /\  ( n  e.  NN  /\  ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
) ) ) )  ->  A  e.  ( EE `  N ) )
5343, 45, 52syl2an 464 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  V  /\  B  e.  ( EE `  N )  /\  C  e.  W )
)  /\  ( n  e.  NN  /\  ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n ) ) ) )  ->  A  e.  ( EE `  N ) )
5453exp32 589 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  V  /\  B  e.  ( EE `  N )  /\  C  e.  W )
)  ->  ( n  e.  NN  ->  ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
)  /\  C  e.  ( EE `  n ) )  ->  A  e.  ( EE `  N ) ) ) )
5541, 54syl7 65 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  V  /\  B  e.  ( EE `  N )  /\  C  e.  W )
)  ->  ( n  e.  NN  ->  ( (
( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n ) )  /\  ( A 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) )  ->  A  e.  ( EE `  N ) ) ) )
5655rexlimdv 2829 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  V  /\  B  e.  ( EE `  N )  /\  C  e.  W )
)  ->  ( E. n  e.  NN  (
( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n )  /\  C  e.  ( EE `  n ) )  /\  ( A 
Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) )  ->  A  e.  ( EE `  N ) ) )
5740, 56sylbid 207 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  V  /\  B  e.  ( EE `  N )  /\  C  e.  W )
)  ->  ( <. <. B ,  C >. ,  A >.  e.  { <. <.
b ,  c >. ,  a >.  |  E. n  e.  NN  (
( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) }  ->  A  e.  ( EE `  N ) ) )
587, 57syl5bi 209 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  V  /\  B  e.  ( EE `  N )  /\  C  e.  W )
)  ->  ( <. B ,  C >. { <. <.
b ,  c >. ,  a >.  |  E. n  e.  NN  (
( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) } A  ->  A  e.  ( EE
`  N ) ) )
596, 58sylbid 207 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  V  /\  B  e.  ( EE `  N )  /\  C  e.  W )
)  ->  ( A `' { <. <. b ,  c
>. ,  a >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) } <. B ,  C >.  ->  A  e.  ( EE `  N
) ) )
602, 59syl5bi 209 1  |-  ( ( N  e.  NN  /\  ( A  e.  V  /\  B  e.  ( EE `  N )  /\  C  e.  W )
)  ->  ( A  Colinear  <. B ,  C >.  ->  A  e.  ( EE `  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    \/ w3o 935    /\ w3a 936    = wceq 1652    e. wcel 1725   E.wrex 2706   _Vcvv 2956   <.cop 3817   class class class wbr 4212   `'ccnv 4877   ` cfv 5454   {coprab 6082   NNcn 10000   EEcee 25827    Btwn cbtwn 25828    Colinear ccolin 25971
This theorem is referenced by:  liness  26079
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-z 10283  df-uz 10489  df-fz 11044  df-ee 25830  df-colinear 25975
  Copyright terms: Public domain W3C validator