Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  colinearxfr Unicode version

Theorem colinearxfr 25723
Description: Transfer law for colinearity. Theorem 4.13 of [Schwabhauser] p. 37. (Contributed by Scott Fenton, 5-Oct-2013.)
Assertion
Ref Expression
colinearxfr  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( B  Colinear  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  ->  E  Colinear  <. D ,  F >. ) )

Proof of Theorem colinearxfr
StepHypRef Expression
1 btwnxfr 25704 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  ->  E  Btwn  <. D ,  F >. ) )
21exp3acom23 1378 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >.  ->  ( B  Btwn  <. A ,  C >.  ->  E  Btwn  <. D ,  F >. ) ) )
32imp 419 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  ->  ( B  Btwn  <. A ,  C >.  ->  E  Btwn  <. D ,  F >. ) )
4 cgr3permute4 25698 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >.  <->  <. C ,  <. A ,  B >. >.Cgr3 <. F ,  <. D ,  E >. >. ) )
5 biid 228 . . . . . . . . . 10  |-  ( N  e.  NN  <->  N  e.  NN )
6 3anrot 941 . . . . . . . . . 10  |-  ( ( C  e.  ( EE
`  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  <->  ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )
7 3anrot 941 . . . . . . . . . 10  |-  ( ( F  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  <->  ( D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N )  /\  F  e.  ( EE `  N ) ) )
8 btwnxfr 25704 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  ->  (
( A  Btwn  <. C ,  B >.  /\  <. C ,  <. A ,  B >. >.Cgr3 <. F ,  <. D ,  E >. >. )  ->  D  Btwn  <. F ,  E >. ) )
95, 6, 7, 8syl3anbr 1228 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( A  Btwn  <. C ,  B >.  /\  <. C ,  <. A ,  B >. >.Cgr3 <. F ,  <. D ,  E >. >. )  ->  D  Btwn  <. F ,  E >. ) )
109exp3acom23 1378 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. C ,  <. A ,  B >. >.Cgr3 <. F ,  <. D ,  E >. >.  ->  ( A  Btwn  <. C ,  B >.  ->  D  Btwn  <. F ,  E >. ) ) )
114, 10sylbid 207 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >.  ->  ( A  Btwn  <. C ,  B >.  ->  D  Btwn  <. F ,  E >. ) ) )
1211imp 419 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  ->  ( A  Btwn  <. C ,  B >.  ->  D  Btwn  <. F ,  E >. ) )
13 cgr3permute3 25695 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >.  <->  <. B ,  <. C ,  A >. >.Cgr3 <. E ,  <. F ,  D >. >. ) )
14 3anrot 941 . . . . . . . . . 10  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  <->  ( B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) ) )
15 3anrot 941 . . . . . . . . . 10  |-  ( ( D  e.  ( EE
`  N )  /\  E  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) )  <->  ( E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )
16 btwnxfr 25704 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  (
( C  Btwn  <. B ,  A >.  /\  <. B ,  <. C ,  A >. >.Cgr3 <. E ,  <. F ,  D >. >. )  ->  F  Btwn  <. E ,  D >. ) )
175, 14, 15, 16syl3anb 1227 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( C  Btwn  <. B ,  A >.  /\  <. B ,  <. C ,  A >. >.Cgr3 <. E ,  <. F ,  D >. >. )  ->  F  Btwn  <. E ,  D >. ) )
1817exp3acom23 1378 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. B ,  <. C ,  A >. >.Cgr3 <. E ,  <. F ,  D >. >.  ->  ( C  Btwn  <. B ,  A >.  ->  F  Btwn  <. E ,  D >. ) ) )
1913, 18sylbid 207 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >.  ->  ( C  Btwn  <. B ,  A >.  ->  F  Btwn  <. E ,  D >. ) ) )
2019imp 419 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  ->  ( C  Btwn  <. B ,  A >.  ->  F  Btwn  <. E ,  D >. ) )
213, 12, 203orim123d 1262 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  ->  ( ( B  Btwn  <. A ,  C >.  \/  A  Btwn  <. C ,  B >.  \/  C  Btwn  <. B ,  A >. )  ->  ( E  Btwn  <. D ,  F >.  \/  D  Btwn  <. F ,  E >.  \/  F  Btwn  <. E ,  D >. ) ) )
22 simp1 957 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  N  e.  NN )
23 simp22 991 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N
) )
24 simp21 990 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N
) )
25 simp23 992 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N
) )
26 brcolinear 25707 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( B  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( B  Colinear  <. A ,  C >. 
<->  ( B  Btwn  <. A ,  C >.  \/  A  Btwn  <. C ,  B >.  \/  C  Btwn  <. B ,  A >. ) ) )
2722, 23, 24, 25, 26syl13anc 1186 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( B  Colinear  <. A ,  C >.  <-> 
( B  Btwn  <. A ,  C >.  \/  A  Btwn  <. C ,  B >.  \/  C  Btwn  <. B ,  A >. ) ) )
2827adantr 452 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  ->  ( B  Colinear  <. A ,  C >. 
<->  ( B  Btwn  <. A ,  C >.  \/  A  Btwn  <. C ,  B >.  \/  C  Btwn  <. B ,  A >. ) ) )
29 simp32 994 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  E  e.  ( EE `  N
) )
30 simp31 993 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N
) )
31 simp33 995 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  F  e.  ( EE `  N
) )
32 brcolinear 25707 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( E  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  -> 
( E  Colinear  <. D ,  F >. 
<->  ( E  Btwn  <. D ,  F >.  \/  D  Btwn  <. F ,  E >.  \/  F  Btwn  <. E ,  D >. ) ) )
3322, 29, 30, 31, 32syl13anc 1186 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( E  Colinear  <. D ,  F >.  <-> 
( E  Btwn  <. D ,  F >.  \/  D  Btwn  <. F ,  E >.  \/  F  Btwn  <. E ,  D >. ) ) )
3433adantr 452 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  ->  ( E  Colinear  <. D ,  F >. 
<->  ( E  Btwn  <. D ,  F >.  \/  D  Btwn  <. F ,  E >.  \/  F  Btwn  <. E ,  D >. ) ) )
3521, 28, 343imtr4d 260 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  ->  ( B  Colinear  <. A ,  C >.  ->  E  Colinear  <. D ,  F >. ) )
3635ex 424 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >.  ->  ( B  Colinear  <. A ,  C >.  ->  E  Colinear  <. D ,  F >. ) ) )
3736com23 74 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( B  Colinear  <. A ,  C >.  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >.  ->  E  Colinear  <. D ,  F >. ) ) )
3837imp3a 421 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( B  Colinear  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  ->  E  Colinear  <. D ,  F >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    \/ w3o 935    /\ w3a 936    e. wcel 1717   <.cop 3760   class class class wbr 4153   ` cfv 5394   NNcn 9932   EEcee 25541    Btwn cbtwn 25542  Cgr3ccgr3 25684    Colinear ccolin 25685
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-er 6841  df-map 6956  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-sup 7381  df-oi 7412  df-card 7759  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-n0 10154  df-z 10215  df-uz 10421  df-rp 10545  df-ico 10854  df-icc 10855  df-fz 10976  df-fzo 11066  df-seq 11251  df-exp 11310  df-hash 11546  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-clim 12209  df-sum 12407  df-ee 25544  df-btwn 25545  df-cgr 25546  df-ofs 25631  df-ifs 25687  df-cgr3 25688  df-colinear 25689
  Copyright terms: Public domain W3C validator