Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  colinrel Unicode version

Theorem colinrel 24680
Description: Colinearity is a relationship. (Contributed by Scott Fenton, 7-Nov-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
colinrel  |-  Rel  Colinear

Proof of Theorem colinrel
Dummy variables  q  p  r  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5051 . 2  |-  Rel  `' { <. <. q ,  r
>. ,  p >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  r  e.  ( EE `  n ) )  /\  ( p 
Btwn  <. q ,  r
>.  \/  q  Btwn  <. r ,  p >.  \/  r  Btwn  <. p ,  q
>. ) ) }
2 df-colinear 24664 . . 3  |-  Colinear  =  `' { <. <. q ,  r
>. ,  p >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  r  e.  ( EE `  n ) )  /\  ( p 
Btwn  <. q ,  r
>.  \/  q  Btwn  <. r ,  p >.  \/  r  Btwn  <. p ,  q
>. ) ) }
32releqi 4772 . 2  |-  ( Rel  Colinear  <->  Rel  `' { <. <. q ,  r
>. ,  p >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  r  e.  ( EE `  n ) )  /\  ( p 
Btwn  <. q ,  r
>.  \/  q  Btwn  <. r ,  p >.  \/  r  Btwn  <. p ,  q
>. ) ) } )
41, 3mpbir 200 1  |-  Rel  Colinear
Colors of variables: wff set class
Syntax hints:    /\ wa 358    \/ w3o 933    /\ w3a 934    e. wcel 1684   E.wrex 2544   <.cop 3643   class class class wbr 4023   `'ccnv 4688   Rel wrel 4694   ` cfv 5255   {coprab 5859   NNcn 9746   EEcee 24516    Btwn cbtwn 24517    Colinear ccolin 24660
This theorem is referenced by:  brcolinear2  24681
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-opab 4078  df-xp 4695  df-rel 4696  df-cnv 4697  df-colinear 24664
  Copyright terms: Public domain W3C validator