MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  com35 Structured version   Unicode version

Theorem com35 87
Description: Commutation of antecedents. Swap 3rd and 5th. (Contributed by Jeff Hankins, 28-Jun-2009.)
Hypothesis
Ref Expression
com5.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et )
) ) ) )
Assertion
Ref Expression
com35  |-  ( ph  ->  ( ps  ->  ( ta  ->  ( th  ->  ( ch  ->  et )
) ) ) )

Proof of Theorem com35
StepHypRef Expression
1 com5.1 . . . 4  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et )
) ) ) )
21com34 80 . . 3  |-  ( ph  ->  ( ps  ->  ( th  ->  ( ch  ->  ( ta  ->  et )
) ) ) )
32com45 86 . 2  |-  ( ph  ->  ( ps  ->  ( th  ->  ( ta  ->  ( ch  ->  et )
) ) ) )
43com34 80 1  |-  ( ph  ->  ( ps  ->  ( ta  ->  ( th  ->  ( ch  ->  et )
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem is referenced by:  bcthlem5  19283  3v3e3cycl1  21633  4cycl4v4e  21655  4cycl4dv4e  21657  nocvxminlem  25647  swrdswrdlem  28220  ad5ant125  28620
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 8
  Copyright terms: Public domain W3C validator