MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  com5r Structured version   Unicode version

Theorem com5r 92
Description: Commutation of antecedents. Rotate right. (Contributed by Wolf Lammen, 29-Jul-2012.)
Hypothesis
Ref Expression
com5.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et )
) ) ) )
Assertion
Ref Expression
com5r  |-  ( ta 
->  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  et )
) ) ) )

Proof of Theorem com5r
StepHypRef Expression
1 com5.1 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et )
) ) ) )
21com52l 90 . 2  |-  ( ch 
->  ( th  ->  ( ta  ->  ( ph  ->  ( ps  ->  et )
) ) ) )
32com52l 90 1  |-  ( ta 
->  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  et )
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem is referenced by:  ad5ant245  28490  ad5ant234  28491  ad5ant235  28492
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 8
  Copyright terms: Public domain W3C validator