MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comfeq Structured version   Unicode version

Theorem comfeq 13934
Description: Condition for two categories with the same hom-sets to have the same composition. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfeq.1  |-  .x.  =  (comp `  C )
comfeq.2  |-  .xb  =  (comp `  D )
comfeq.h  |-  H  =  (  Hom  `  C
)
comfeq.3  |-  ( ph  ->  B  =  ( Base `  C ) )
comfeq.4  |-  ( ph  ->  B  =  ( Base `  D ) )
comfeq.5  |-  ( ph  ->  (  Homf 
`  C )  =  (  Homf 
`  D ) )
Assertion
Ref Expression
comfeq  |-  ( ph  ->  ( (compf `  C )  =  (compf `  D )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  =  ( g (
<. x ,  y >.  .xb  z ) f ) ) )
Distinct variable groups:    f, g, x, y, z, B    C, f, g, z    ph, f,
g, z    .x. , f, g, x, y    D, f, g, z    f, H, g, x, y    .xb , f,
g, x, y
Allowed substitution hints:    ph( x, y)    C( x, y)    D( x, y)    .xb ( z)    .x. ( z)    H( z)

Proof of Theorem comfeq
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 ovex 6108 . . . . . 6  |-  ( ( 2nd `  u ) H z )  e. 
_V
2 fvex 5744 . . . . . 6  |-  ( H `
 u )  e. 
_V
31, 2mpt2ex 6427 . . . . 5  |-  ( g  e.  ( ( 2nd `  u ) H z ) ,  f  e.  ( H `  u
)  |->  ( g ( u  .x.  z ) f ) )  e. 
_V
43rgen2w 2776 . . . 4  |-  A. u  e.  ( B  X.  B
) A. z  e.  B  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.x.  z ) f ) )  e.  _V
5 mpt22eqb 6181 . . . 4  |-  ( A. u  e.  ( B  X.  B ) A. z  e.  B  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.x.  z ) f ) )  e.  _V  ->  ( ( u  e.  ( B  X.  B
) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.x.  z ) f ) ) )  =  ( u  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.xb  z ) f ) ) )  <->  A. u  e.  ( B  X.  B
) A. z  e.  B  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.x.  z ) f ) )  =  ( g  e.  ( ( 2nd `  u ) H z ) ,  f  e.  ( H `
 u )  |->  ( g ( u  .xb  z ) f ) ) ) )
64, 5ax-mp 8 . . 3  |-  ( ( u  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  u ) H z ) ,  f  e.  ( H `
 u )  |->  ( g ( u  .x.  z ) f ) ) )  =  ( u  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  u ) H z ) ,  f  e.  ( H `
 u )  |->  ( g ( u  .xb  z ) f ) ) )  <->  A. u  e.  ( B  X.  B
) A. z  e.  B  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.x.  z ) f ) )  =  ( g  e.  ( ( 2nd `  u ) H z ) ,  f  e.  ( H `
 u )  |->  ( g ( u  .xb  z ) f ) ) )
7 vex 2961 . . . . . . . . 9  |-  x  e. 
_V
8 vex 2961 . . . . . . . . 9  |-  y  e. 
_V
97, 8op2ndd 6360 . . . . . . . 8  |-  ( u  =  <. x ,  y
>.  ->  ( 2nd `  u
)  =  y )
109oveq1d 6098 . . . . . . 7  |-  ( u  =  <. x ,  y
>.  ->  ( ( 2nd `  u ) H z )  =  ( y H z ) )
11 fveq2 5730 . . . . . . . . 9  |-  ( u  =  <. x ,  y
>.  ->  ( H `  u )  =  ( H `  <. x ,  y >. )
)
12 df-ov 6086 . . . . . . . . 9  |-  ( x H y )  =  ( H `  <. x ,  y >. )
1311, 12syl6eqr 2488 . . . . . . . 8  |-  ( u  =  <. x ,  y
>.  ->  ( H `  u )  =  ( x H y ) )
14 oveq1 6090 . . . . . . . . . 10  |-  ( u  =  <. x ,  y
>.  ->  ( u  .x.  z )  =  (
<. x ,  y >.  .x.  z ) )
1514oveqd 6100 . . . . . . . . 9  |-  ( u  =  <. x ,  y
>.  ->  ( g ( u  .x.  z ) f )  =  ( g ( <. x ,  y >.  .x.  z
) f ) )
16 oveq1 6090 . . . . . . . . . 10  |-  ( u  =  <. x ,  y
>.  ->  ( u  .xb  z )  =  (
<. x ,  y >.  .xb  z ) )
1716oveqd 6100 . . . . . . . . 9  |-  ( u  =  <. x ,  y
>.  ->  ( g ( u  .xb  z )
f )  =  ( g ( <. x ,  y >.  .xb  z
) f ) )
1815, 17eqeq12d 2452 . . . . . . . 8  |-  ( u  =  <. x ,  y
>.  ->  ( ( g ( u  .x.  z
) f )  =  ( g ( u 
.xb  z ) f )  <->  ( g (
<. x ,  y >.  .x.  z ) f )  =  ( g (
<. x ,  y >.  .xb  z ) f ) ) )
1913, 18raleqbidv 2918 . . . . . . 7  |-  ( u  =  <. x ,  y
>.  ->  ( A. f  e.  ( H `  u
) ( g ( u  .x.  z ) f )  =  ( g ( u  .xb  z ) f )  <->  A. f  e.  (
x H y ) ( g ( <.
x ,  y >.  .x.  z ) f )  =  ( g (
<. x ,  y >.  .xb  z ) f ) ) )
2010, 19raleqbidv 2918 . . . . . 6  |-  ( u  =  <. x ,  y
>.  ->  ( A. g  e.  ( ( 2nd `  u
) H z ) A. f  e.  ( H `  u ) ( g ( u 
.x.  z ) f )  =  ( g ( u  .xb  z
) f )  <->  A. g  e.  ( y H z ) A. f  e.  ( x H y ) ( g (
<. x ,  y >.  .x.  z ) f )  =  ( g (
<. x ,  y >.  .xb  z ) f ) ) )
21 ovex 6108 . . . . . . . 8  |-  ( g ( u  .x.  z
) f )  e. 
_V
2221rgen2w 2776 . . . . . . 7  |-  A. g  e.  ( ( 2nd `  u
) H z ) A. f  e.  ( H `  u ) ( g ( u 
.x.  z ) f )  e.  _V
23 mpt22eqb 6181 . . . . . . 7  |-  ( A. g  e.  ( ( 2nd `  u ) H z ) A. f  e.  ( H `  u
) ( g ( u  .x.  z ) f )  e.  _V  ->  ( ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.x.  z ) f ) )  =  ( g  e.  ( ( 2nd `  u ) H z ) ,  f  e.  ( H `
 u )  |->  ( g ( u  .xb  z ) f ) )  <->  A. g  e.  ( ( 2nd `  u
) H z ) A. f  e.  ( H `  u ) ( g ( u 
.x.  z ) f )  =  ( g ( u  .xb  z
) f ) ) )
2422, 23ax-mp 8 . . . . . 6  |-  ( ( g  e.  ( ( 2nd `  u ) H z ) ,  f  e.  ( H `
 u )  |->  ( g ( u  .x.  z ) f ) )  =  ( g  e.  ( ( 2nd `  u ) H z ) ,  f  e.  ( H `  u
)  |->  ( g ( u  .xb  z )
f ) )  <->  A. g  e.  ( ( 2nd `  u
) H z ) A. f  e.  ( H `  u ) ( g ( u 
.x.  z ) f )  =  ( g ( u  .xb  z
) f ) )
25 ralcom 2870 . . . . . 6  |-  ( A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g ( <. x ,  y >.  .x.  z
) f )  =  ( g ( <.
x ,  y >.  .xb  z ) f )  <->  A. g  e.  (
y H z ) A. f  e.  ( x H y ) ( g ( <.
x ,  y >.  .x.  z ) f )  =  ( g (
<. x ,  y >.  .xb  z ) f ) )
2620, 24, 253bitr4g 281 . . . . 5  |-  ( u  =  <. x ,  y
>.  ->  ( ( g  e.  ( ( 2nd `  u ) H z ) ,  f  e.  ( H `  u
)  |->  ( g ( u  .x.  z ) f ) )  =  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.xb  z ) f ) )  <->  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  =  ( g (
<. x ,  y >.  .xb  z ) f ) ) )
2726ralbidv 2727 . . . 4  |-  ( u  =  <. x ,  y
>.  ->  ( A. z  e.  B  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.x.  z ) f ) )  =  ( g  e.  ( ( 2nd `  u ) H z ) ,  f  e.  ( H `
 u )  |->  ( g ( u  .xb  z ) f ) )  <->  A. z  e.  B  A. f  e.  (
x H y ) A. g  e.  ( y H z ) ( g ( <.
x ,  y >.  .x.  z ) f )  =  ( g (
<. x ,  y >.  .xb  z ) f ) ) )
2827ralxp 5018 . . 3  |-  ( A. u  e.  ( B  X.  B ) A. z  e.  B  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.x.  z ) f ) )  =  ( g  e.  ( ( 2nd `  u ) H z ) ,  f  e.  ( H `
 u )  |->  ( g ( u  .xb  z ) f ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. f  e.  (
x H y ) A. g  e.  ( y H z ) ( g ( <.
x ,  y >.  .x.  z ) f )  =  ( g (
<. x ,  y >.  .xb  z ) f ) )
296, 28bitri 242 . 2  |-  ( ( u  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  u ) H z ) ,  f  e.  ( H `
 u )  |->  ( g ( u  .x.  z ) f ) ) )  =  ( u  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  u ) H z ) ,  f  e.  ( H `
 u )  |->  ( g ( u  .xb  z ) f ) ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  =  ( g (
<. x ,  y >.  .xb  z ) f ) )
30 comfeq.3 . . . . . 6  |-  ( ph  ->  B  =  ( Base `  C ) )
3130, 30xpeq12d 4905 . . . . 5  |-  ( ph  ->  ( B  X.  B
)  =  ( (
Base `  C )  X.  ( Base `  C
) ) )
32 eqidd 2439 . . . . 5  |-  ( ph  ->  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.x.  z ) f ) )  =  ( g  e.  ( ( 2nd `  u ) H z ) ,  f  e.  ( H `
 u )  |->  ( g ( u  .x.  z ) f ) ) )
3331, 30, 32mpt2eq123dv 6138 . . . 4  |-  ( ph  ->  ( u  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.x.  z ) f ) ) )  =  ( u  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ,  z  e.  ( Base `  C )  |->  ( g  e.  ( ( 2nd `  u ) H z ) ,  f  e.  ( H `  u
)  |->  ( g ( u  .x.  z ) f ) ) ) )
34 eqid 2438 . . . . 5  |-  (compf `  C
)  =  (compf `  C
)
35 eqid 2438 . . . . 5  |-  ( Base `  C )  =  (
Base `  C )
36 comfeq.h . . . . 5  |-  H  =  (  Hom  `  C
)
37 comfeq.1 . . . . 5  |-  .x.  =  (comp `  C )
3834, 35, 36, 37comfffval 13926 . . . 4  |-  (compf `  C
)  =  ( u  e.  ( ( Base `  C )  X.  ( Base `  C ) ) ,  z  e.  (
Base `  C )  |->  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.x.  z ) f ) ) )
3933, 38syl6eqr 2488 . . 3  |-  ( ph  ->  ( u  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.x.  z ) f ) ) )  =  (compf `  C ) )
40 eqid 2438 . . . . . . . 8  |-  (  Hom  `  D )  =  (  Hom  `  D )
41 comfeq.5 . . . . . . . . 9  |-  ( ph  ->  (  Homf 
`  C )  =  (  Homf 
`  D ) )
42413ad2ant1 979 . . . . . . . 8  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  (  Homf  `  C )  =  (  Homf 
`  D ) )
43 xp2nd 6379 . . . . . . . . . 10  |-  ( u  e.  ( B  X.  B )  ->  ( 2nd `  u )  e.  B )
44433ad2ant2 980 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  ( 2nd `  u )  e.  B )
45303ad2ant1 979 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  B  =  ( Base `  C
) )
4644, 45eleqtrd 2514 . . . . . . . 8  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  ( 2nd `  u )  e.  ( Base `  C
) )
47 simp3 960 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  z  e.  B )
4847, 45eleqtrd 2514 . . . . . . . 8  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  z  e.  ( Base `  C
) )
4935, 36, 40, 42, 46, 48homfeqval 13925 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  (
( 2nd `  u
) H z )  =  ( ( 2nd `  u ) (  Hom  `  D ) z ) )
50 xp1st 6378 . . . . . . . . . . . 12  |-  ( u  e.  ( B  X.  B )  ->  ( 1st `  u )  e.  B )
51503ad2ant2 980 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  ( 1st `  u )  e.  B )
5251, 45eleqtrd 2514 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  ( 1st `  u )  e.  ( Base `  C
) )
5335, 36, 40, 42, 52, 46homfeqval 13925 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  (
( 1st `  u
) H ( 2nd `  u ) )  =  ( ( 1st `  u
) (  Hom  `  D
) ( 2nd `  u
) ) )
54 df-ov 6086 . . . . . . . . 9  |-  ( ( 1st `  u ) H ( 2nd `  u
) )  =  ( H `  <. ( 1st `  u ) ,  ( 2nd `  u
) >. )
55 df-ov 6086 . . . . . . . . 9  |-  ( ( 1st `  u ) (  Hom  `  D
) ( 2nd `  u
) )  =  ( (  Hom  `  D
) `  <. ( 1st `  u ) ,  ( 2nd `  u )
>. )
5653, 54, 553eqtr3g 2493 . . . . . . . 8  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  ( H `  <. ( 1st `  u ) ,  ( 2nd `  u )
>. )  =  (
(  Hom  `  D ) `
 <. ( 1st `  u
) ,  ( 2nd `  u ) >. )
)
57 1st2nd2 6388 . . . . . . . . . 10  |-  ( u  e.  ( B  X.  B )  ->  u  =  <. ( 1st `  u
) ,  ( 2nd `  u ) >. )
58573ad2ant2 980 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  u  =  <. ( 1st `  u
) ,  ( 2nd `  u ) >. )
5958fveq2d 5734 . . . . . . . 8  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  ( H `  u )  =  ( H `  <. ( 1st `  u
) ,  ( 2nd `  u ) >. )
)
6058fveq2d 5734 . . . . . . . 8  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  (
(  Hom  `  D ) `
 u )  =  ( (  Hom  `  D
) `  <. ( 1st `  u ) ,  ( 2nd `  u )
>. ) )
6156, 59, 603eqtr4d 2480 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  ( H `  u )  =  ( (  Hom  `  D ) `  u
) )
62 eqidd 2439 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  (
g ( u  .xb  z ) f )  =  ( g ( u  .xb  z )
f ) )
6349, 61, 62mpt2eq123dv 6138 . . . . . 6  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  (
g  e.  ( ( 2nd `  u ) H z ) ,  f  e.  ( H `
 u )  |->  ( g ( u  .xb  z ) f ) )  =  ( g  e.  ( ( 2nd `  u ) (  Hom  `  D ) z ) ,  f  e.  ( (  Hom  `  D
) `  u )  |->  ( g ( u 
.xb  z ) f ) ) )
6463mpt2eq3dva 6140 . . . . 5  |-  ( ph  ->  ( u  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.xb  z ) f ) ) )  =  ( u  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  u
) (  Hom  `  D
) z ) ,  f  e.  ( (  Hom  `  D ) `  u )  |->  ( g ( u  .xb  z
) f ) ) ) )
65 comfeq.4 . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  D ) )
6665, 65xpeq12d 4905 . . . . . 6  |-  ( ph  ->  ( B  X.  B
)  =  ( (
Base `  D )  X.  ( Base `  D
) ) )
67 eqidd 2439 . . . . . 6  |-  ( ph  ->  ( g  e.  ( ( 2nd `  u
) (  Hom  `  D
) z ) ,  f  e.  ( (  Hom  `  D ) `  u )  |->  ( g ( u  .xb  z
) f ) )  =  ( g  e.  ( ( 2nd `  u
) (  Hom  `  D
) z ) ,  f  e.  ( (  Hom  `  D ) `  u )  |->  ( g ( u  .xb  z
) f ) ) )
6866, 65, 67mpt2eq123dv 6138 . . . . 5  |-  ( ph  ->  ( u  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  u
) (  Hom  `  D
) z ) ,  f  e.  ( (  Hom  `  D ) `  u )  |->  ( g ( u  .xb  z
) f ) ) )  =  ( u  e.  ( ( Base `  D )  X.  ( Base `  D ) ) ,  z  e.  (
Base `  D )  |->  ( g  e.  ( ( 2nd `  u
) (  Hom  `  D
) z ) ,  f  e.  ( (  Hom  `  D ) `  u )  |->  ( g ( u  .xb  z
) f ) ) ) )
6964, 68eqtrd 2470 . . . 4  |-  ( ph  ->  ( u  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.xb  z ) f ) ) )  =  ( u  e.  ( ( Base `  D
)  X.  ( Base `  D ) ) ,  z  e.  ( Base `  D )  |->  ( g  e.  ( ( 2nd `  u ) (  Hom  `  D ) z ) ,  f  e.  ( (  Hom  `  D
) `  u )  |->  ( g ( u 
.xb  z ) f ) ) ) )
70 eqid 2438 . . . . 5  |-  (compf `  D
)  =  (compf `  D
)
71 eqid 2438 . . . . 5  |-  ( Base `  D )  =  (
Base `  D )
72 comfeq.2 . . . . 5  |-  .xb  =  (comp `  D )
7370, 71, 40, 72comfffval 13926 . . . 4  |-  (compf `  D
)  =  ( u  e.  ( ( Base `  D )  X.  ( Base `  D ) ) ,  z  e.  (
Base `  D )  |->  ( g  e.  ( ( 2nd `  u
) (  Hom  `  D
) z ) ,  f  e.  ( (  Hom  `  D ) `  u )  |->  ( g ( u  .xb  z
) f ) ) )
7469, 73syl6eqr 2488 . . 3  |-  ( ph  ->  ( u  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.xb  z ) f ) ) )  =  (compf `  D ) )
7539, 74eqeq12d 2452 . 2  |-  ( ph  ->  ( ( u  e.  ( B  X.  B
) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.x.  z ) f ) ) )  =  ( u  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.xb  z ) f ) ) )  <->  (compf `  C )  =  (compf `  D ) ) )
7629, 75syl5rbbr 253 1  |-  ( ph  ->  ( (compf `  C )  =  (compf `  D )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  =  ( g (
<. x ,  y >.  .xb  z ) f ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707   _Vcvv 2958   <.cop 3819    X. cxp 4878   ` cfv 5456  (class class class)co 6083    e. cmpt2 6085   1stc1st 6349   2ndc2nd 6350   Basecbs 13471    Hom chom 13542  compcco 13543    Homf chomf 13893  compfccomf 13894
This theorem is referenced by:  comfeqd  13935  2oppccomf  13953  oppccomfpropd  13955  resssetc  14249  resscatc  14262
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-homf 13897  df-comf 13898
  Copyright terms: Public domain W3C validator